We present the technique for resummation of flux tube excitations series arising in pentagon operator expansion program for polygonal Wilson loops in N=4 SYM. Here we restrict ourselves with contributions of one-particle effective states and consider as a particular example NMHV 6 particle amplitude at one-loop. The presented technique is also applicable at higher loops for one effective particle contributions and has the potential for generalization for contributions with more effective particles.
We compute the one-loop non-holomorphic effective potential for the N=4 SU(n) supersymmetric Yang-Mills theory with the gauge symmetry broken down to the maximal torus. Our approach remains powerful for arbitrary gauge groups and is based on the use of N=2 harmonic superspace formulation for general N=2 Yang-Mills theories along with the superfield background field method.
We review the basic results concerning the structure of effective action in N=4 supersymmetric Yang-Mills theory in Coulomb phase. Various classical formulations of this theory are considered. We show that the low-energy effective action depending on all fileds of N=4 vector multiplet can be exactly found. This result is discussed on the base of algebraic analysis exploring the general harmonic superspace techniques and on the base of straightforward quantum field theory calculations using the N=2 supersymmetric background field method. We study the one-loop effective action beyond leading low-energy approximation and construct supersymmetric generalization of Heisenberg-Euler-Schwinger effective action depending on all fields of N=4 vector multiplet. We also consider the derivation of leading low-enrgy effective action at two loops.
We study cluster adjacency conjectures for amplitudes in maximally supersymmetric Yang-Mills theory. We show that the n-point one-loop NMHV ratio function satisfies Steinmann cluster adjacency. We also show that the one-loop BDS-like normalized NMHV amplitude satisfies cluster adjacency between Yangian invariants and final symbol entries up to 9-points. We present conjectures for cluster adjacency properties of Plucker coordinates, quadratic cluster variables, and NMHV Yangian invariants that generalize the notion of weak separation.
Using four-dimensional unitarity and MHV-rules we calculate the one-loop MHV amplitudes with all external particles in the adjoint representation for N=2 supersymmetric QCD with N_f fundamental flavours. We start by considering such amplitudes in the superconformal N=4 gauge theory where the N=4 supersymmetric Ward identities (SWI) guarantee that all MHV amplitudes for all types of external particles are given by the corresponding tree-level result times a universal helicity- and particle-type-independent contribution. In N=2 SQCD the MHV amplitudes differ from those for N=4 for general values of N_f and N_c. However, for N_f=2N_c where the N=2 SQCD is conformal, the N=2 MHV amplitudes (with all external particles in the adjoint representation) are identical to the N=4results. This factorisation at one-loop motivates us to pose a question if there may be a BDS-like factorisation for these amplitudes which also holds at higher orders of perturbation theory in superconformal N=2 theory.
We present $mathcal{N}=2$ superconformal $mathsf{U}(1)$ duality-invariant models for an Abelian vector multiplet coupled to conformal supergravity. In a Minkowski background, such a nonlinear theory is expected to describe (the planar part of) the low-energy effective action for the $mathcal{N}=4$ $mathsf{SU}(N)$ super-Yang-Mills (SYM) theory on its Coulomb branch where (i) the gauge group $mathsf{SU}(N)$ is spontaneously broken to $mathsf{SU}(N-1) times mathsf{U}(1)$; and (ii) the dynamics is captured by a single $mathcal{N}=2$ vector multiplet associated with the $mathsf{U}(1)$ factor of the unbroken group. Additionally, a local $mathsf{U}(1)$ duality-invariant action generating the $mathcal{N}=2$ super-Weyl anomaly is proposed. By providing a new derivation of the recently constructed $mathsf{U}(1)$ duality-invariant $mathcal{N}=1$ superconformal electrodynamics, we introduce its $mathsf{SL}(2,{mathbb R})$ duality-invariant coupling to the dilaton-axion multiplet.