Multiplicity of the saturated special fiber ring of height three Gorenstein ideals


Abstract in English

Let $R$ be a polynomial ring over a field and $I subset R$ be a Gorenstein ideal of height three that is minimally generated by homogeneous polynomials of the same degree. We compute the multiplicity of the saturated special fiber ring of $I$. The obtained formula depends only on the number of variables of $R$, the minimal number of generators of $I$, and the degree of the syzygies of $I$. Applying results from arXiv:1805.05180, we get a formula for the $j$-multiplicity of $I$ and an effective method to study a rational map determined by a minimal set of generators of $I$.

Download