No Arabic abstract
For a planar simplicial complex Delta contained in R^2, Schumaker proved that a lower bound on the dimension of the space C^r_k(Delta) of planar splines of smoothness r and polynomial degree at most k on Delta is given by a polynomial P_Delta(r,k), and Alfeld-Schumaker showed this polynomial gives the correct dimension when k >= 4r+1. Examples due to Morgan-Scott, Tohaneanu, and Yuan show that the equality dim C^r_k(Delta) = P_Delta(r,k) can fail when k = 2r or 2r+1. We prove that the equality dim C^r_k(Delta)= P_Delta(r,k) cannot hold in general for k <= (22r+7)/10.
A piecewise Chebyshevian spline space is good for design when it possesses a B-spline basis and this property is preserved under arbitrary knot insertion. The interest in piecewise Chebyshevian spline spaces that are good for design is justified by the fact that, similarly as for polynomial splines, the related parametric curves exhibit the desired properties of convex hull inclusion, variation diminution and intuitive relation between the curve shape and the location of the control points. For all good-for-design spaces, in this paper we construct a set of functions, called transition functions, which allow for efficient computation of the B-spline basis, even in the case of nonuniform and multiple knots. Moreover, we show how the spline coefficients of the representations associated with a refined knot partition and with a raised order can conveniently be expressed by means of transition functions. This result allows us to provide effective procedures that generalize the classical knot insertion and degree raising algorithms for polynomial splines. To illustrate the benefits of the proposed computational approaches, we provide several examples dealing with different types of piecewise Chebyshevian spline spaces that are good for design.
Many algorithms for determining properties of real algebraic or semi-algebraic sets rely upon the ability to compute smooth points. Existing methods to compute smooth points on semi-algebraic sets use symbolic quantifier elimination tools. In this paper, we present a simple algorithm based on computing the critical points of some well-chosen function that guarantees the computation of smooth points in each connected compact component of a real (semi)-algebraic set. Our technique is intuitive in principal, performs well on previously difficult examples, and is straightforward to implement using existing numerical algebraic geometry software. The practical efficiency of our approach is demonstrated by solving a conjecture on the number of equilibria of the Kuramoto model for the $n=4$ case. We also apply our method to design an efficient algorithm to compute the real dimension of (semi)-algebraic sets, the original motivation for this research.
A standard construction in approximation theory is mesh refinement. For a simplicial or polyhedral mesh D in R^k, we study the subdivision D obtained by subdividing a maximal cell of D. We give sufficient conditions for the module of splines on D to split as the direct sum of splines on D and splines on the subdivided cell. As a consequence, we obtain dimension formulas and explicit bases for several commonly used subdivisions and their multivariate generalizations.
We present an algorithm to decide whether a given ideal in the polynomial ring contains a monomial without using Grobner bases, factorization or sub-resultant computations.
This paper is devoted to the question of constructing a higher order Faber spline basis for the sampling discretization of functions with higher regularity than Lipschitz. The basis constructed in this paper has similar properties as the piecewise linear classical Faber-Schauder basis except for the compactness of the support. Although the new basis functions are supported on the real line they are very well localized (exponentially decaying) and the main parts are concentrated on a segment. This construction gives a complete answer to Problem 3.13 in Triebels monograph (see References [47]) by extending the classical Faber basis to higher orders. Roughly, the crucial idea to obtain a higher order Faber spline basis is to apply Taylors remainder formula to the dual Chui-Wang wavelets. As a first step we explicitly determine these dual wavelets which may be of independent interest. Using this new basis we provide sampling characterizations for Besov and Triebel-Lizorkin spaces and overcome the smoothness restriction coming from the classical piecewise linear Faber-Schauder system. This basis is unconditional and coefficient functionals are computed from discrete function values similar as for the Faber-Schauder situation.