Separation probabilities and analogues of a Zagier-Stanley formula


Abstract in English

In this paper, we first obtain some analogues of a formula of Zagier (1995) and Stanley (2011). For instance, we prove that the number of pairs of $n$-cycles whose product has $k$ cycles and has $m$ given elements contained in distinct cycles (or separated) is given by $$ frac{2 (n-1)! C_m(n+1,k)}{(n+m)(n+1-m)} $$ when $n-k$ is even, where $C_m(n,k)$ is the number of permutations of $n$ elements having $k$ cycles and separating $m$ given elements. As consequences, we obtain the formulas for certain separation probabilities due to Du and Stanley, answering a call of Stanley for simple combinatorial proofs. Furthermore, we obtain the expectation and variance of the number of fixed points in the product of two random $n$-cycles.

Download