Comet 66P/du Toit: not a near Earth main belt comet


Abstract in English

Main belt comets (MBCs) are a peculiar class of volatile-containing objects with comet-like morphology and asteroid-like orbits. However, MBCs are challenging targets to study remotely due to their small sizes and the relatively large distance they are from the Sun and the Earth. Recently, a number of weakly active short-period comets have been identified that might originate in the asteroid main belt. Among all of the known candidates, comet 66P/du Toit has been suggested to have one of the highest probabilities of coming from the main belt. We obtained medium and high-resolution spectra of 66P from 300-2500 nm with the X-shooter/VLT and the UVES/VLT instruments in July 2018. We also obtained a series of narrow-band images of 66P to monitor the gas and dust activity between May and July 2018 with TRAPPIST-South. In addition, we applied a dust model to characterize the dust coma of 66P and performed dynamical simulations to study the orbital evolution of 66P. We derive the OPR of ammonia (NH$_3$) in 66P to be 1.08$pm$0.06, which corresponds to a nuclear spin temperature of $sim$34 K. We computed the production rates of OH, NH, CN, C$_3,$ and C$_2$ radicals and measured the dust proxy, Af$rho$. The dust analysis reveals that the coma can be best-fit with an anisotropic model and the peak dust production rate is about 55 kg s$^{-1}$ at the perihelion distance of 1.29 au. Dynamical simulations show that 66P is moderately asteroidal with the capture time, t$_{cap} sim 10^4$ yr. Our observations demonstrate that the measured physical properties of 66P are consistent with other typical short-period comets and differ significantly from other MBCs. Therefore, 66P is unlikely to have a main belt origin.

Download