Do you want to publish a course? Click here

Extracting the field theory description of a quantum many-body system from experimental data

60   0   0.0 ( 0 )
 Added by Torsten V. Zache
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum field theory is a powerful tool to describe the relevant physics governing complex quantum many-body systems. Here we develop a general pathway to extract the irreducible building blocks of quantum field theoretical descriptions and its parameters purely from experimental data. This is accomplished by extracting the one-particle irreducible (1PI) vertices from which one can construct all observables. To match the capabilities of experimental techniques used in quantum simulation experiments, our approach employs a formulation of quantum field theory based on equal-time correlation functions only. We illustrate our procedure by applying it to the quantum sine-Gordon model in thermal equilibrium. The theoretical foundations are illustrated by estimating the irreducible vertices at equal times both analytically and using numerical simulations. We then demonstrate explicitly how to extract these quantities from an experiment where we quantum simulate the sine-Gordon model by two tunnel-coupled superfluids. We extract the full two-point function and the interaction vertex (four-point function) and their variation with momentum, encoding the `running of the couplings. The measured 1PI vertices are compared to the theoretical estimates, verifying our procedure. Our work opens new ways of addressing fundamental questions in quantum field theory, which are relevant in high-energy and condensed matter physics, and in taking quantum phenomena from fundamental science to practical technology.



rate research

Read More

We experimentally investigate the action of a localized dissipative potential on a macroscopic matter wave, which we implement by shining an electron beam on an atomic Bose-Einstein condensate (BEC). We measure the losses induced by the dissipative potential as a function of the dissipation strength observing a paradoxical behavior when the strength of the dissipation exceeds a critical limit: for an increase of the dissipation rate the number of atoms lost from the BEC becomes lower. We repeat the experiment for different parameters of the electron beam and we compare our results with a simple theoretical model, finding excellent agreement. By monitoring the dynamics induced by the dissipative defect we identify the mechanisms which are responsible for the observed paradoxical behavior. We finally demonstrate the link between our dissipative dynamics and the measurement of the density distribution of the BEC allowing for a generalized definition of the Zeno effect. Due to the high degree of control on every parameter, our system is a promising candidate for the engineering of fully governable open quantum systems.
The classical-field formalism has been widely applied in the calculation of normal correlation functions, and the characterization of condensation, in finite-temperature Bose gases. Here we discuss the extension of this method to the calculation of more general correlations, including the so-called anomalous correlations of the field, without recourse to symmetry-breaking assumptions. Our method is based on the introduction of U(1)-symmetric classical-field variables analogous to the modified quantum ladder operators of number-conserving approaches to the degenerate Bose gas, and allows us to rigorously quantify the anomalous and non-Gaussian character of the field fluctuations. We compare our results for anomalous correlation functions with the predictions of mean-field theories, and demonstrate that the nonlinear classical-field dynamics incorporate a full description of many-body processes which modify the effective mean-field potentials experienced by condensate and noncondensate atoms. We discuss the role of these processes in shaping the condensate mode, and thereby demonstrate the consistency of the Penrose-Onsager definition of the condensate orbital in the classical-field equilibrium. We consider the contribution of various noncondensate-field correlations to the overall suppression of density fluctuations and interactions in the field, and demonstrate the distinct roles of phase and density fluctuations in the transition of the field to the normal phase.
Controlling interactions is the key element for quantum engineering of many-body systems. Using time-periodic driving, a naturally given many-body Hamiltonian of a closed quantum system can be transformed into an effective target Hamiltonian exhibiting vastly different dynamics. We demonstrate such Floquet engineering with a system of spins represented by Rydberg states in an ultracold atomic gas. Applying a sequence of spin manipulations, we change the symmetry properties of the effective Heisenberg XYZ Hamiltonian. As a consequence, the relaxation behavior of the total spin is drastically modified. The observed dynamics can be qualitatively captured by a semi-classical simulation. Synthesising a wide range of Hamiltonians opens vast opportunities for implementing quantum simulation of non-equilibrium dynamics in a single experimental setting.
The single-particle density is the most basic quantity that can be calculated from a given many-body wave function. It provides the probability to find a particle at a given position when the average over many realizations of an experiment is taken. However, the outcome of single experimental shots of ultracold atom experiments is determined by the $N$-particle probability density. This difference can lead to surprising results. For example, independent Bose-Einstein condensates (BECs) with definite particle numbers form interference fringes even though no fringes would be expected based on the single-particle density [1-4]. By drawing random deviates from the $N$-particle probability density single experimental shots can be simulated from first principles [1, 3, 5]. However, obtaining expressions for the $N$-particle probability density of realistic time-dependent many-body systems has so far been elusive. Here, we show how single experimental shots of general ultracold bosonic systems can be simulated based on numerical solutions of the many-body Schrodinger equation. We show how full counting distributions of observables involving any number of particles can be obtained and how correlation functions of any order can be evaluated. As examples we show the appearance of interference fringes in interacting independent BECs, fluctuations in the collisions of strongly attractive BECs, the appearance of randomly fluctuating vortices in rotating systems and the center of mass fluctuations of attractive BECs in a harmonic trap. The method described is broadly applicable to bosonic many-body systems whose phenomenology is driven by information beyond what is typically available in low-order correlation functions.
Atomtronics is an emerging field which aims to manipulate ultracold atom moving in matter wave circuits for both fundamental studies in quantum science and technological applications. In this colloquium, we review recent progress in matter-wave circuitry and atomtronics-based quantum technology. After a short introduction to the basic physical principles and the key experimental techniques needed to realize atomtronic systems, we describe the physics of matter-wave in simple circuits such as ring traps and two-terminal systems. The main experimental observations and outstanding questions are discussed. Applications to a broad range of quantum technologies, from quantum sensing with atom interferometry to future quantum simulation and quantum computation architectures, are then presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا