Do you want to publish a course? Click here

On the transition from gas-like to liquid-like behaviour in supercritical N2

56   0   0.0 ( 0 )
 Added by John Proctor
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied in detail the transition from gas-like to rigid liquid-like behaviour in supercritical $N_2$ at 300 K (2.4 $T_C$). Our study combines neutron diffraction and Raman spectroscopy with empirical potential structure refinement and ab-initio molecular dynamics simulations. We observe a narrow transition from gas-like to rigid liquid-like behaviour at ca. 150 MPa, which we associate with the Frenkel line. Our findings allow us to reliably characterize the Frenkel line using both diffraction and spectroscopy methods, backed up by simulation, for the same substance. We clearly lay out what parameters change, and what parameters do not change, when the Frenkel line is crossed.



rate research

Read More

Molecular-scale dynamics in sub- to super-critical water is studied with inelastic X-ray scattering and molecular dynamics simulations. The obtained longitudinal current correlation spectra can be decomposed into two main components: a low-frequency (LF), gas-like component and a high-frequency (HF) component arising from the O--O stretching mode between hydrogen-bonded molecules, reminiscent of the longitudinal acoustic mode in ambient water. With increasing temperature, the hydrogen-bond network diminishes and the spectral weight shifts from HF to LF, leading to a transition from liquid-like to gas-like dynamics with rapid changes around the Widom line.
The high frequency dynamics of fluid oxygen have been investigated by Inelastic X-ray Scattering. In spite of the markedly supercritical conditions ($Tapprox 2 T_c$, $P>10^2 P_c$), the sound velocity exceeds the hydrodynamic value of about 20%, a feature which is the fingerprint of liquid-like dynamics. The comparison of the present results with literature data obtained in several fluids allow us to identify the extrapolation of the liquid vapor-coexistence line in the ($P/P_c$, $T/T_c$) plane as the relevant edge between liquid- and gas-like dynamics. More interestingly, this extrapolation is very close to the non metal-metal transition in hot dense fluids, at pressure and temperature values as obtained by shock wave experiments. This result points to the existence of a connection between structural modifications and transport properties in dense fluids.
We attempt to simulate the heterogeneous nucleation of ice at model silver-iodide surfaces and find relatively facile ice nucleation and growth at the Ag+ termi nated basal face, but never see nucleation at the I- terminated basal face or the prism and normal faces. Water molecules strongly adsorb onto the Ag+ terminate d face to give a well-ordered hexagonal ice-like bilayer that then acts as a template for further ice growth.
349 - B. Li , Y. Kawakita , Q. Zhang 2017
A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations. Here, we report that the crystalline solid AgCrSe2 has liquid-like thermal conduction. In this compound, Ag atoms exhibit a dynamic duality that they are exclusively involved in intense low-lying transverse acoustic phonons while they also undergo local fluctuations inherent in an order-to-disorder transition occurring at 450 K. As a consequence of this extreme disorder-phonon coupling, transverse acoustic phonons become damped as approaching the transition temperature, above which they are not defined anymore because their lifetime is shorter than the relaxation time of local fluctuations. Nevertheless, the damped longitudinal acoustic phonon survives for thermal transport. This microscopic insight might reshape the fundamental idea on thermal transport properties of matter and facilitates the optimization of thermoelectrics.
Metals cannot exhibit ferroelectricity because static internal electric fields are screened by conduction electrons, but in 1965, Anderson and Blount predicted the possibility of a ferroelectric metal, in which a ferroelectric-like structural transition occurs in the metallic state. Up to now, no clear example of such a material has been identified. Here we report on a centrosymmetric (R-3c) to non-centrosymmetric (R3c) transition in metallic LiOsO3 that is structurally equivalent to the ferroelectric transition of LiNbO3. The transition involves a continuous shift in the mean position of Li+ ions on cooling below 140K. Its discovery realizes the scenario described by Anderson and Blount, and establishes a new class of materials whose properties may differ from those of normal metals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا