Do you want to publish a course? Click here

Rethinking Task and Metrics of Instance Segmentation on 3D Point Clouds

67   0   0.0 ( 0 )
 Added by Kosuke Arase
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Instance segmentation on 3D point clouds is one of the most extensively researched areas toward the realization of autonomous cars and robots. Certain existing studies have split input point clouds into small regions such as 1m x 1m; one reason for this is that models in the studies cannot consume a large number of points because of the large space complexity. However, because such small regions occasionally include a very small number of instances belonging to the same class, an evaluation using existing metrics such as mAP is largely affected by the category recognition performance. To address these problems, we propose a new method with space complexity O(Np) such that large regions can be consumed, as well as novel metrics for tasks that are independent of the categories or size of the inputs. Our method learns a mapping from input point clouds to an embedding space, where the embeddings form clusters for each instance and distinguish instances using these clusters during testing. Our method achieves state-of-the-art performance using both existing and the proposed metrics. Moreover, we show that our new metric can evaluate the performance of a task without being affected by any other condition.



rate research

Read More

We propose a novel, conceptually simple and general framework for instance segmentation on 3D point clouds. Our method, called 3D-BoNet, follows the simple design philosophy of per-point multilayer perceptrons (MLPs). The framework directly regresses 3D bounding boxes for all instances in a point cloud, while simultaneously predicting a point-level mask for each instance. It consists of a backbone network followed by two parallel network branches for 1) bounding box regression and 2) point mask prediction. 3D-BoNet is single-stage, anchor-free and end-to-end trainable. Moreover, it is remarkably computationally efficient as, unlike existing approaches, it does not require any post-processing steps such as non-maximum suppression, feature sampling, clustering or voting. Extensive experiments show that our approach surpasses existing work on both ScanNet and S3DIS datasets while being approximately 10x more computationally efficient. Comprehensive ablation studies demonstrate the effectiveness of our design.
3D semantic scene labeling is fundamental to agents operating in the real world. In particular, labeling raw 3D point sets from sensors provides fine-grained semantics. Recent works leverage the capabilities of Neural Networks (NNs), but are limited to coarse voxel predictions and do not explicitly enforce global consistency. We present SEGCloud, an end-to-end framework to obtain 3D point-level segmentation that combines the advantages of NNs, trilinear interpolation(TI) and fully connected Conditional Random Fields (FC-CRF). Coarse voxel predictions from a 3D Fully Convolutional NN are transferred back to the raw 3D points via trilinear interpolation. Then the FC-CRF enforces global consistency and provides fine-grained semantics on the points. We implement the latter as a differentiable Recurrent NN to allow joint optimization. We evaluate the framework on two indoor and two outdoor 3D datasets (NYU V2, S3DIS, KITTI, Semantic3D.net), and show performance comparable or superior to the state-of-the-art on all datasets.
We develop a novel learning scheme named Self-Prediction for 3D instance and semantic segmentation of point clouds. Distinct from most existing methods that focus on designing convolutional operators, our method designs a new learning scheme to enhance point relation exploring for better segmentation. More specifically, we divide a point cloud sample into two subsets and construct a complete graph based on their representations. Then we use label propagation algorithm to predict labels of one subset when given labels of the other subset. By training with this Self-Prediction task, the backbone network is constrained to fully explore relational context/geometric/shape information and learn more discriminative features for segmentation. Moreover, a general associated framework equipped with our Self-Prediction scheme is designed for enhancing instance and semantic segmentation simultaneously, where instance and semantic representations are combined to perform Self-Prediction. Through this way, instance and semantic segmentation are collaborated and mutually reinforced. Significant performance improvements on instance and semantic segmentation compared with baseline are achieved on S3DIS and ShapeNet. Our method achieves state-of-the-art instance segmentation results on S3DIS and comparable semantic segmentation results compared with state-of-the-arts on S3DIS and ShapeNet when we only take PointNet++ as the backbone network.
We propose an approach to instance segmentation from 3D point clouds based on dynamic convolution. This enables it to adapt, at inference, to varying feature and object scales. Doing so avoids some pitfalls of bottom up approaches, including a dependence on hyper-parameter tuning and heuristic post-processing pipelines to compensate for the inevitable variability in object sizes, even within a single scene. The representation capability of the network is greatly improved by gathering homogeneous points that have identical semantic categories and close votes for the geometric centroids. Instances are then decoded via several simple convolution layers, where the parameters are generated conditioned on the input. The proposed approach is proposal-free, and instead exploits a convolution process that adapts to the spatial and semantic characteristics of each instance. A light-weight transformer, built on the bottleneck layer, allows the model to capture long-range dependencies, with limited computational overhead. The result is a simple, efficient, and robust approach that yields strong performance on various datasets: ScanNetV2, S3DIS, and PartNet. The consistent improvements on both voxel- and point-based architectures imply the effectiveness of the proposed method. Code is available at: https://git.io/DyCo3D
Instance segmentation in point clouds is one of the most fine-grained ways to understand the 3D scene. Due to its close relationship to semantic segmentation, many works approach these two tasks simultaneously and leverage the benefits of multi-task learning. However, most of them only considered simple strategies such as element-wise feature fusion, which may not lead to mutual promotion. In this work, we build a Bi-Directional Attention module on backbone neural networks for 3D point cloud perception, which uses similarity matrix measured from features for one task to help aggregate non-local information for the other task, avoiding the potential feature exclusion and task conflict. From comprehensive experiments and ablation studies on the S3DIS dataset and the PartNet dataset, the superiority of our method is verified. Moreover, the mechanism of how bi-directional attention module helps joint instance and semantic segmentation is also analyzed.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا