No Arabic abstract
We report on analysis of observations of the bright transient X-ray pulsar src obtained during its 2017-2018 giant outburst with Insight-HXMT, emph{NuSTAR}, and textit{Swift} observatories. We focus on the discovery of a sharp state transition of the timing and spectral properties of the source at super-Eddington accretion rates, which we associate with the transition of the accretion disk to a radiation pressure dominated (RPD) state, the first ever directly observed for magnetized neutron star. This transition occurs at slightly higher luminosity compared to already reported transition of the source from sub- to super-critical accretion regime associate with onset of an accretion column. We argue that this scenario can only be realized for comparatively weakly magnetized neutron star, not dissimilar to other ultra-luminous X-ray pulsars (ULPs), which accrete at similar rates. Further evidence for this conclusion is provided by the non-detection of the transition to the propeller state in quiescence which strongly implies compact magnetosphere and thus rules out magnetar-like fields.
The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {it the Hard X-ray Modulation Telescope} ({it Insight-rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to $rm 150~keV$. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with $Brm sim 10^{13}~G$, $Drm sim 6~kpc$ and peak luminosity of $rm >10^{39}~erg~s^{-1}$ which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.
Based on Insight-HXMT data, we report on the pulse fraction evolution during the 2017-2018 outburst of the newly discovered first Galactic ultraluminous X-ray source (ULX) Swift J0243.6+6124. The pulse fractions of 19 observation pairs selected in the rising and fading phases with similar luminosity are investigated. The results show a general trend of the pulse fraction increasing with luminosity and energy at super-critical luminosity. However, the relative strength of the pulsation between each pair evolves strongly with luminosity. The pulse fraction in the rising phase is larger at luminosity below $7.71times10^{38}$~erg~s$^{-1}$, but smaller at above. A transition luminosity is found to be energy independent. Such a phenomena is firstly confirmed by Insight-HXMT observations and we speculate it may have relation with the radiation pressure dominated accretion disk.
Swift J0243.6+6124 was discovered during a giant X-ray outburst in October 2017. While there are numerous studies in the X-ray band, very little is known about the optical counterpart. We have performed an spectral and photometric analysis of the optical counterpart of this intriguing source. We find that the optical counterpart to Swift J0243.6+6124 is a V = 12.9, O9.5Ve star, located at a distance of $sim5$ kpc. The optical extinction in the direction of the source is $A_V=3.6$ mag. The rotational velocity of the O-type star is 210 km s$^{-1}$. The long-term optical variability agrees with the growth and subsequent dissipation of the Be circumstellar disk after the giant X-ray outburst. The optical and X-ray luminosity are strongly correlated during the outburst, suggesting a common origin. We did not detect short-term periodic variability that could be associated with nonradial pulsations from the Be star photosphere.
SwiftJ0243.6+6124, the first Galactic ultra-luminous X-ray pulsar, was observed during its 2017-2018 outburst with emph{AstroSat} at both sub- and super-Eddington levels of accretionwith X-ray luminosities of $L_{X}{sim}7{times}10^{37}$ and $6{times}10^{38}$$ergs^{-1}$, respectively.Our broadband timing and spectral observations show that X-ray pulsations at ${sim}9.85rm{s}$ have been detected up to 150keV when the source was accreting at the super-Eddington level.The pulse profiles are a strong function of both energy and source luminosity,showing a double-peaked profile with pulse fraction increasing from $sim$$10{%}$ at $1.65rm{keV}$ to 40--80$%$ at $70rm{keV}$.The continuum X-ray spectra are well-modeled with a high energy cut-off power law($Gamma$${sim}$0.6-0.7) and one or two blackbody components with temperatures of $sim$0.35$rm{keV}$ and $1.2rm{keV}$, depending on the accretion level.No iron line emission is observed at sub-Eddington level, while a broad emission feature at around 6.9keV is observed at the super-Eddington level, along with a blackbody radius($121-142rm{km}$) that indicates the presence of optically thick outflows.
GRO J1008-57, as a Be/X-ray transient pulsar, is considered to have the highest magnetic field in known neutron star X-ray binary systems. Observational data of the X-ray outbursts in GRO J1008-57 from 2017 to 2020 were collected by the Insight-HXMT satellite. In this work, the spin period of the neutron star in GRO J1008-57 was determined to be about 93.28 seconds in August 2017, 93.22 seconds in February 2018, 93.25 seconds in June 2019 and 93.14 seconds in June 2020. GRO J1008-57 evolved in the spin-up process with a mean rate of $-(2.10pm 0.05)times$10$^{-4}$ s/d from 2009 -- 2018, and turned into a spin down process with a rate of $(6.7pm 0.6)times$10$^{-5}$ s/d from Feb 2018 to June 2019. During the type II outburst of 2020, GRO J1008-57 had the spin-up torque again. During the torque reversals, the pulse profiles and continuum X-ray spectra did not change significantly, and the cyclotron resonant scattering feature around 80 keV was only detected during the outbursts in 2017 and 2020. Based on the observed mean spin-up rate, we estimated the inner accretion disk radius in GRO J1008-57 (about 1 - 2 times of the Alfv{e}n radius) by comparing different accretion torque models of magnetic neutron stars. During the spin-down process, the magnetic torque should dominate over the matter accreting inflow torque, and we constrained the surface dipole magnetic field $Bgeq 6times 10^{12}$ G for the neutron star in GRO J1008-57, which is consistent with the magnetic field strength obtained by cyclotron line centroid energy.