Do you want to publish a course? Click here

A novel metric for community detection

118   0   0.0 ( 0 )
 Added by Keke Shang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Research into detection of dense communities has recently attracted increasing attention within network science, various metrics for detection of such communities have been proposed. The most popular metric -- Modularity -- is based on the so-called rule that the links within communities are denser than external links among communities, has become the default. However, this default metric suffers from ambiguity, and worse, all augmentations of modularity and based on a narrow intuition of what it means to form a community. We argue that in specific, but quite common systems, links within a community are not necessarily more common than links between communities. Instead we propose that the defining characteristic of a community is that links are more predictable within a community rather than between communities. In this paper, based on the effect of communities on link prediction, we propose a novel metric for the community detection based directly on this feature. We find that our metric is more robustness than traditional modularity. Consequently, we can achieve an evaluation of algorithm stability for the same detection algorithm in different networks. Our metric also can directly uncover the false community detection, and infer more statistical characteristics for detection algorithms.



rate research

Read More

Time-stamped data are increasingly available for many social, economic, and information systems that can be represented as networks growing with time. The World Wide Web, social contact networks, and citation networks of scientific papers and online news articles, for example, are of this kind. Static methods can be inadequate for the analysis of growing networks as they miss essential information on the systems dynamics. At the same time, time-aware methods require the choice of an observation timescale, yet we lack principled ways to determine it. We focus on the popular community detection problem which aims to partition a networks nodes into meaningful groups. We use a multi-layer quality function to show, on both synthetic and real datasets, that the observation timescale that leads to optimal communities is tightly related to the systems intrinsic aging timescale that can be inferred from the time-stamped network data. The use of temporal information leads to drastically different conclusions on the community structure of real information networks, which challenges the current understanding of the large-scale organization of growing networks. Our findings indicate that before attempting to assess structural patterns of evolving networks, it is vital to uncover the timescales of the dynamical processes that generated them.
Networks in nature possess a remarkable amount of structure. Via a series of data-driven discoveries, the cutting edge of network science has recently progressed from positing that the random graphs of mathematical graph theory might accurately describe real networks to the current viewpoint that networks in nature are highly complex and structured entities. The identification of high order structures in networks unveils insights into their functional organization. Recently, Clauset, Moore, and Newman, introduced a new algorithm that identifies such heterogeneities in complex networks by utilizing the hierarchy that necessarily organizes the many levels of structure. Here, we anchor their algorithm in a general community detection framework and discuss the future of community detection.
Many systems exhibit complex temporal dynamics due to the presence of different processes taking place simultaneously. Temporal networks provide a framework to describe the time-resolve interactions between components of a system. An important task when investigating such systems is to extract a simplified view of the temporal network, which can be done via dynamic community detection or clustering. Several works have generalized existing community detection methods for static networks to temporal networks, but they usually rely on temporal aggregation over time windows, the assumption of an underlying stationary process, or sequences of different stationary epochs. Here, we derive a method based on a dynamical process evolving on the temporal network and restricted by its activation pattern that allows to consider the full temporal information of the system. Our method allows dynamics that do not necessarily reach a steady state, or follow a sequence of stationary states. Our framework encompasses several well-known heuristics as special cases. We show that our method provides a natural way to disentangle the different natural dynamical scales present in a system. We demonstrate our method abilities on synthetic and real-world examples.
As new instances of nested organization --beyond ecological networks-- are discovered, scholars are debating around the co-existence of two apparently incompatible macroscale architectures: nestedness and modularity. The discussion is far from being solved, mainly for two reasons. First, nestedness and modularity appear to emerge from two contradictory dynamics, cooperation and competition. Second, existing methods to assess the presence of nestedness and modularity are flawed when it comes to the evaluation of concurrently nested and modular structures. In this work, we tackle the latter problem, presenting the concept of textit{in-block nestedness}, a structural property determining to what extent a network is composed of blocks whose internal connectivity exhibits nestedness. We then put forward a set of optimization methods that allow us to identify such organization successfully, both in synthetic and in a large number of real networks. These findings challenge our understanding of the topology of ecological and social systems, calling for new models to explain how such patterns emerge.
Embedding a network in hyperbolic space can reveal interesting features for the network structure, especially in terms of self-similar characteristics. The hidden metric space, which can be thought of as the underlying structure of the network, is able to preserve some interesting features generally observed in real-world networks such as heterogeneity in the degree distribution, high clustering coefficient, and small-world effect. Moreover, the angular distribution of the nodes in the hyperbolic plane reveals a community structure of the embedded network. It is worth noting that, while a large body of literature compares well-known community detection algorithms, there is still no consensus on what defines an ideal community partition on a network. Moreover, heuristics for communities found on networks embedded in the hyperbolic space have been investigated here for the first time. We compare the partitions found on embedded networks to the partitions obtained before the embedding step, both for a synthetic network and for two real-world networks. The second part of this paper presents the application of our pipeline to a network of retweets in the context of the Italian elections. Our results uncover a community structure reflective of the political spectrum, encouraging further research on the application of community detection heuristics to graphs mapped onto hyperbolic planes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا