Do you want to publish a course? Click here

Minimal Equivalence Relations in Hyperarithmetical and Analytical Hierarchies

73   0   0.0 ( 0 )
 Added by Luca San Mauro
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

A standard tool for classifying the complexity of equivalence relations on $omega$ is provided by computable reducibility. This reducibility gives rise to a rich degree structure. The paper studies equivalence relations, which induce minimal degrees with respect to computable reducibility. Let $Gamma$ be one of the following classes: $Sigma^0_{alpha}$, $Pi^0_{alpha}$, $Sigma^1_n$, or $Pi^1_n$, where $alpha geq 2$ is a computable ordinal and $n$ is a non-zero natural number. We prove that there are infinitely many pairwise incomparable minimal equivalence relations that are properly in $Gamma$.



rate research

Read More

109 - Tomasz Rzepecki 2018
We study strong types and Galois groups in model theory from a topological and descriptive-set-theoretical point of view, leaning heavily on topological dynamical tools. More precisely, we give an abstract (not model theoretic) treatment of problems related to cardinality and Borel cardinality of strong types, quotients of definable groups and related objecets, generalising (and often improving) essentially all hitherto known results in this area. In particular, we show that under reasonable assumptions, strong type spaces are locally quotients of compact Polish groups. It follows that they are smooth if and only if they are type-definable, and that a quotient of a type-definable group by an analytic subgroup is either finite or of cardinality at least continuum.
The complexity of equivalence relations has received much attention in the recent literature. The main tool for such endeavour is the following reducibility: given equivalence relations $R$ and $S$ on natural numbers, $R$ is computably reducible to $S$ if there is a computable function $f colon omega to omega$ that induces an injective map from $R$-equivalence classes to $S$-equivalence classes. In order to compare the complexity of equivalence relations which are computable, researchers considered also feasible variants of computable reducibility, such as the polynomial-time reducibility. In this work, we explore $mathbf{Peq}$, the degree structure generated by primitive recursive reducibility on punctual equivalence relations (i.e., primitive recursive equivalence relations with domain $omega$). In contrast with all other known degree structures on equivalence relations, we show that $mathbf{Peq}$ has much more structure: e.g., we show that it is a dense distributive lattice. On the other hand, we also offer evidence of the intricacy of $mathbf{Peq}$, proving, e.g., that the structure is neither rigid nor homogeneous.
Computably enumerable equivalence relations (ceers) received a lot of attention in the literature. The standard tool to classify ceers is provided by the computable reducibility $leq_c$. This gives rise to a rich degree-structure. In this paper, we lift the study of $c$-degrees to the $Delta^0_2$ case. In doing so, we rely on the Ershov hierarchy. For any notation $a$ for a non-zero computable ordinal, we prove several algebraic properties of the degree-structure induced by $leq_c$ on the $Sigma^{-1}_{a}smallsetminus Pi^{-1}_a$ equivalence relations. A special focus of our work is on the (non)existence of infima and suprema of $c$-degrees.
We prove that the theory of the $p$-adics ${mathbb Q}_p$ admits elimination of imaginaries provided we add a sort for ${rm GL}_n({mathbb Q}_p)/{rm GL}_n({mathbb Z}_p)$ for each $n$. We also prove that the elimination of imaginaries is uniform in $p$. Using $p$-adic and motivic integration, we deduce the uniform rationality of certain formal zeta functions arising from definable equivalence relations. This also yields analogous results for definable equivalence relations over local fields of positive characteristic. The appendix contains an alternative proof, using cell decomposition, of the rationality (for fixed $p$) of these formal zeta functions that extends to the subanalytic context. As an application, we prove rationality and uniformity results for zeta functions obtained by counting twist isomorphism classes of irreducible representations of finitely generated nilpotent groups; these are analogous to similar results of Grunewald, Segal and Smith and of du Sautoy and Grunewald for subgroup zeta functions of finitely generated nilpotent groups.
72 - Tomasz Rzepecki 2016
We extend some recent results about bounded invariant equivalence relations and invariant subgroups of definable groups: we show that type-definability and smoothness are equivalent conditions in a wider class of relations than heretofore considered, which includes all the cases for which the equivalence was proved before. As a by-product, we show some analogous results in purely topological context (without direct use of model theory).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا