First detection of the Crab Nebula at TeV energies with a Cherenkov telescope in a dual-mirror Schwarzschild-Couder configuration: the ASTRI-Horn telescope


Abstract in English

We report on the first detection of very high-energy (VHE) gamma-ray emission from the Crab Nebula by a Cherenkov telescope in dual-mirror Schwarzschild-Couder (SC) configuration. The result has been achieved by means of the 4 m size ASTRI-Horn telescope, operated on Mt. Etna (Italy) and developed in the context of the Cherenkov Telescope Array Observatory preparatory phase. The dual-mirror SC design is aplanatic and characterized by a small plate scale, allowing us to implement large field of view cameras with small-size pixel sensors and a high compactness. The curved focal plane of the ASTRI camera is covered by silicon photo-multipliers (SiPMs), managed by an unconventional front-end electronics based on a customized peak-sensing detector mode. The system includes internal and external calibration systems, hardware and software for control and acquisition, and the complete data archiving and processing chain. The observations of the Crab Nebula were carried out in December 2018, during the telescope verification phase, for a total observation time (after data selection) of 24.4 h, equally divided into on- and off-axis source exposure. The camera system was still under commissioning and its functionality was not yet completely exploited. Furthermore, due to recent eruptions of the Etna Volcano, the mirror reflection efficiency was reduced. Nevertheless, the observations led to the detection of the source with a statistical significance of 5.4 sigma above an energy threshold of ~3 TeV. This result provides an important step towards the use of dual-mirror systems in Cherenkov gamma-ray astronomy. A pathfinder mini-array based on nine large field-of-view ASTRI-like telescopes is under implementation.

Download