Reconstruction of the Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ Fermi Surface


Abstract in English

The effects of structural supermodulation with the period $lambda approx26$ AA along the $b$-axis of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ have been observed in photoemission studies from the early days as the presence of diffraction replicas of the intrinsic electronic structure. Although predicted to affect the electronic structure of the Cu-O plane, the influence of supermodulation potential on Cu-O electrons has never been observed in photoemission. In the present study, we clearly see, for the first time, the effects on the Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ electronic structure - we observe a hybridization of the intrinsic bands with the supermodulation replica bands in the form of avoided crossings and a corresponding reconstruction of the Fermi surface. We estimate the hybridization gap, $2Delta_hsim25$ meV in the slightly underdoped samples. The hybridization weakens with doping and the anti-crossing can no longer be resolved in strongly overdoped samples. In contrast, the shadow replica, shifted by $(pi, pi)$, is found not to hybridize with the original bands within our detection limits.

Download