Do you want to publish a course? Click here

Testing emission models on the extreme blazar 2WHSP J073326.7+515354 detected at very high energies with the MAGIC telescopes

236   0   0.0 ( 0 )
 Added by Luca Foffano
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars. Their typical two-hump structured spectral energy distribution (SED) peaks at higher energies with respect to conventional blazars. Multi-wavelength (MWL) observations constrain their synchrotron peak in the medium to hard X-ray band. Their gamma-ray SED peaks above the GeV band, and in some objects it extends up to several TeV. Up to now, only a few EHBLs have been detected in the TeV gamma-ray range. In this paper, we report the detection of the EHBL 2WHSP J073326.7+515354, observed and detected during 2018 in TeV gamma rays with the MAGIC telescopes. The broad-band SED is studied within a MWL context, including an analysis of the Fermi-LAT data over ten years of observation and with simultaneous Swift-XRT, Swift-UVOT, and KVA data. Our analysis results in a set of spectral parameters that confirms the classification of the source as an EHBL. In order to investigate the physical nature of this extreme emission, different theoretical frameworks were tested to model the broad-band SED. The hard TeV spectrum of 2WHSP J073326.7+515354 sets the SED far from the energy equipartition regime in the standard one-zone leptonic scenario of blazar emission. Conversely, more complex models of the jet, represented by either a two-zone spine-layer model or a hadronic emission model, better represent the broad-band SED.



rate research

Read More

Extreme high-energy peaked BL Lac objects (EHBLs) are a new emerging class of blazars. The typical two-hump structured spectral energy distribution (SED) is shifted to higher energies with respect to other more established classes of blazars. Multi-wavelength observations allow us to constrain their synchrotron peak in the medium and hard X-ray bands. Their gamma-ray emission dominates above the GeV gamma-ray band, and in some objects it extends up to several TeV (e.g. 1ES 0229+200). Their hard TeV spectrum is also interesting for the implications on the extragalactic background light indirect measurements, the intergalactic magnetic field estimate, and the possible origin of extragalactic high-energy neutrinos. Up to now, only a few objects have been studied in the TeV gamma-ray range. In this contribution, we will present the new detection of the EHBL object PGC 2402248, recently discovered in TeV gamma rays with the MAGIC telescopes. The analysis results of a set of multi-wavelength simultaneous observations up to the VHE gamma-ray band provide the broad-band SED of the blazar, which will be used to probe different emission models. Given the extreme characteristics of this blazar, constraints on the physical parameters within the framework of leptonic and hadronic models are derived.
Extreme high-energy peaked BL Lac objects (EHBLs) are blazars whose synchrotron emission peaks at exceptionally high energies, above few keV, in the hard X-ray regime. So far, only a handful of those objects has been detected at very high energy (VHE, E > 100 GeV) gamma rays by Imaging Atmospheric Cherenkov Telescopes. Very remarkably, VHE observations of some of these blazars (like 1ES 0229+200) have provided evidence of a VHE gamma-ray emission extending to several TeV, which is difficult to explain with standard, one-zone synchrotron self-Compton models usually applied to BL Lac objects. The MAGIC collaboration coordinated a multi-year, multi-wavelength observational campaign on ten targets. The MAGIC telescopes detected VHE gamma rays from four EHBLs. In this paper we focus on the source 1ES 1426+426 and its X-ray and VHE gamma-ray properties. The results of different models (synchrotron self-Compton, spine-layer, hadronic) reproducing the broadband spectral energy distribution are also presented.
Extreme high-frequency peaked BL Lac objects (EHBLs) are blazars which exhibit extremely energetic synchrotron emission. They also feature non-thermal gamma-ray emission whose peak lies in the very high-energy (VHE, E > 100 GeV) range, and in some sources exceeds 1TeV: this is the case of hard-TeV EHBLs such as 1ES 0229+200. With the aim of increasing the EHBL population, ten targets were observed with the MAGIC telescopes from 2010 to 2017, for a total of 262 h of good quality data. The data were complemented by coordinated Swift observations. The X-ray data analysis confirms that all the sources but two are EHBLs. The sources show only a modest variability and a harder-when-brighter behavior, typical for this class of objects. At VHE gamma rays, three new sources were detected and a hint of signal was found for another new source. In each case the intrinsic spectrum is compatible with the hypothesis of a hard-TeV nature of these EHBLs. The broadband spectral energy distributions (SEDs) of all sources are built and modeled in the framework of a single-zone purely leptonic model. The VHE gamma-ray detected sources were also interpreted with a spine-layer and a proton synchrotron models. The three models provide a good description of the SEDs. However, the resulting parameters differ substantially in the three scenarios, in particular the magnetization parameter. This work presents a first mini-catalog of VHE gamma-ray and multi-wavelength observations of EHBLs.
Motivated by the Costamante & Ghisellini (2002) predictions we investigated if the blazar 1ES 1727+502 (z=0.055) is emitting very high energy (VHE, E>100 GeV) gamma rays. We observed the BL Lac object 1ES 1727+502 in stereoscopic mode with the two MAGIC telescopes during 14 nights between May 6th and June 10th 2011, for a total effective observing time of 12.6 hours. For the study of the multiwavelength spectral energy distribution (SED) we use simultaneous optical R-band data from the KVA telescope, archival UV/optical and X-ray observations by instruments UVOT and XRT on board of the Swift satellite and high energy (HE, 0.1 GeV - 100 GeV) gamma-ray data from the Fermi-LAT instrument. We detect, for the first time, VHE gamma-ray emission from 1ES 1727+502 at a statistical significance of 5.5 sigma. The integral flux above 150 GeV is estimated to be (2.1pm0.4)% of the Crab Nebula flux and the de-absorbed VHE spectrum has a photon index of (2.7pm0.5). No significant short-term variability was found in any of the wavebands presented here. We model the SED using a one-zone synchrotron self-Compton model obtaining parameters typical for this class of sources.
The number of known very high energy (VHE) blazars is $sim,50$, which is very small in comparison to the number of blazars detected in other frequencies. This situation is a handicap for population studies of blazars, which emit about half of their luminosity in the $gamma$-ray domain. Moreover, VHE blazars, if distant, allow for the study of the environment that the high-energy $gamma$-rays traverse in their path towards the Earth, like the extragalactic background light (EBL) and the intergalactic magnetic field (IGMF), and hence they have a special interest for the astrophysics community. We present the first VHE detection of 1ES,0033+595 with a statistical significance of 5.5,$sigma$. The VHE emission of this object is constant throughout the MAGIC observations (2009 August and October), and can be parameterized with a power law with an integral flux above 150 GeV of $(7.1pm1.3)times 10^{-12} {mathrm{ph,cm^{-2},s^{-1}}}$ and a photon index of ($3.8pm0.7$). We model its spectral energy distribution (SED) as the result of inverse Compton scattering of synchrotron photons. For the study of the SED we used simultaneous optical R-band data from the KVA telescope, archival X-ray data by textit{Swift} as well as textit{INTEGRAL}, and simultaneous high energy (HE, $300$,MeV~--~$10$,GeV) $gamma$-ray data from the textit{Fermi} LAT observatory. Using the empirical approach of Prandini et al. (2010) and the textit{Fermi}-LAT and MAGIC spectra for this object, we estimate the redshift of this source to be $0.34pm0.08pm0.05$. This is a relevant result because this source is possibly one of the ten most distant VHE blazars known to date, and with further (simultaneous) observations could play an important role in blazar population studies, as well as future constraints on the EBL and IGMF.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا