Do you want to publish a course? Click here

Haar Graph Pooling

125   0   0.0 ( 0 )
 Added by Yuguang Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Deep Graph Neural Networks (GNNs) are useful models for graph classification and graph-based regression tasks. In these tasks, graph pooling is a critical ingredient by which GNNs adapt to input graphs of varying size and structure. We propose a new graph pooling operation based on compressive Haar transforms -- HaarPooling. HaarPooling implements a cascade of pooling operations; it is computed by following a sequence of clusterings of the input graph. A HaarPooling layer transforms a given input graph to an output graph with a smaller node number and the same feature dimension; the compressive Haar transform filters out fine detail information in the Haar wavelet domain. In this way, all the HaarPooling layers together synthesize the features of any given input graph into a feature vector of uniform size. Such transforms provide a sparse characterization of the data and preserve the structure information of the input graph. GNNs implemented with standard graph convolution layers and HaarPooling layers achieve state of the art performance on diverse graph classification and regression problems.



rate research

Read More

Advanced methods of applying deep learning to structured data such as graphs have been proposed in recent years. In particular, studies have focused on generalizing convolutional neural networks to graph data, which includes redefining the convolution and the downsampling (pooling) operations for graphs. The method of generalizing the convolution operation to graphs has been proven to improve performance and is widely used. However, the method of applying downsampling to graphs is still difficult to perform and has room for improvement. In this paper, we propose a graph pooling method based on self-attention. Self-attention using graph convolution allows our pooling method to consider both node features and graph topology. To ensure a fair comparison, the same training procedures and model architectures were used for the existing pooling methods and our method. The experimental results demonstrate that our method achieves superior graph classification performance on the benchmark datasets using a reasonable number of parameters.
We propose a novel graph cross network (GXN) to achieve comprehensive feature learning from multiple scales of a graph. Based on trainable hierarchical representations of a graph, GXN enables the interchange of intermediate features across scales to promote information flow. Two key ingredients of GXN include a novel vertex infomax pooling (VIPool), which creates multiscale graphs in a trainable manner, and a novel feature-crossing layer, enabling feature interchange across scales. The proposed VIPool selects the most informative subset of vertices based on the neural estimation of mutual information between vertex features and neighborhood features. The intuition behind is that a vertex is informative when it can maximally reflect its neighboring information. The proposed feature-crossing layer fuses intermediate features between two scales for mutual enhancement by improving information flow and enriching multiscale features at hidden layers. The cross shape of the feature-crossing layer distinguishes GXN from many other multiscale architectures. Experimental results show that the proposed GXN improves the classification accuracy by 2.12% and 1.15% on average for graph classification and vertex classification, respectively. Based on the same network, the proposed VIPool consistently outperforms other graph-pooling methods.
Graph Neural Networks (GNNs) have recently caught great attention and achieved significant progress in graph-level applications. In this paper, we propose a framework for graph neural networks with multiresolution Haar-like wavelets, or MathNet, with interrelated convolution and pooling strategies. The underlying method takes graphs in different structures as input and assembles consistent graph representations for readout layers, which then accomplishes label prediction. To achieve this, the multiresolution graph representations are first constructed and fed into graph convolutional layers for processing. The hierarchical graph pooling layers are then involved to downsample graph resolution while simultaneously remove redundancy within graph signals. The whole workflow could be formed with a multi-level graph analysis, which not only helps embed the intrinsic topological information of each graph into the GNN, but also supports fast computation of forward and adjoint graph transforms. We show by extensive experiments that the proposed framework obtains notable accuracy gains on graph classification and regression tasks with performance stability. The proposed MathNet outperforms various existing GNN models, especially on big data sets.
In many mobile health interventions, treatments should only be delivered in a particular context, for example when a user is currently stressed, walking or sedentary. Even in an optimal context, concerns about user burden can restrict which treatments are sent. To diffuse the treatment delivery over times when a user is in a desired context, it is critical to predict the future number of times the context will occur. The focus of this paper is on whether personalization can improve predictions in these settings. Though the variance between individuals behavioral patterns suggest that personalization should be useful, the amount of individual-level data limits its capabilities. Thus, we investigate several methods which pool data across users to overcome these deficiencies and find that pooling lowers the overall error rate relative to both personalized and batch approaches.
Recent years have witnessed the emergence and flourishing of hierarchical graph pooling neural networks (HGPNNs) which are effective graph representation learning approaches for graph level tasks such as graph classification. However, current HGPNNs do not take full advantage of the graphs intrinsic structures (e.g., community structure). Moreover, the pooling operations in existing HGPNNs are difficult to be interpreted. In this paper, we propose a new interpretable graph pooling framework - CommPOOL, that can capture and preserve the hierarchical community structure of graphs in the graph representation learning process. Specifically, the proposed community pooling mechanism in CommPOOL utilizes an unsupervised approach for capturing the inherent community structure of graphs in an interpretable manner. CommPOOL is a general and flexible framework for hierarchical graph representation learning that can further facilitate various graph-level tasks. Evaluations on five public benchmark datasets and one synthetic dataset demonstrate the superior performance of CommPOOL in graph representation learning for graph classification compared to the state-of-the-art baseline methods, and its effectiveness in capturing and preserving the community structure of graphs.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا