Do you want to publish a course? Click here

Direct observation of Dirac states in Bi2Te3 nanoplatelets by 125Te NMR

72   0   0.0 ( 0 )
 Added by Andrew Pell J
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Detection of the metallic Dirac electronic states on the surface of Topological Insulators (TIs) is a tribune for a small number of experimental techniques the most prominent of which is Angle Resolved Photoemission Spectroscopy. However, there is no experimental method showing at atomic scale resolution how the Dirac electrons extend inside TI systems. This is a critical issue in the study of important surface quantum properties, especially topological quasiparticle excitations. Herein, by applying advanced DFT-assisted solid-state 125Te Nuclear Magnetic Resonance on Bi2Te3 nanoplatelets, we succeeded in uncovering the hitherto invisible NMR signals with magnetic shielding influenced by the Dirac electrons, and subsequently showed how Dirac electrons spread and interact with the bulk interior of the nanoplatelets.



rate research

Read More

243 - Jianbo Hu , Oleg V. Misochko , 2010
A coherent two-phonon bound state has been impulsively generated in ZnTe(110) via second-order Raman scattering in the time domain for the first time. The two-phonon bound state, composed of two anticorrelated in wave vector acoustic phonons, exhibits full {Gamma}1 symmetry and has energy higher than the corresponding 2TA(X) overtone. By suppressing two-phonon fluctuations with a double-pulse excitation, the coexistence of coherently excited bound and unbound two-phonon states has been demonstrated.
76 - J. Cui , E. M. Levin , Y. Lee 2016
We have carried out $^{125}$Te nuclear magnetic resonance (NMR) in a wide temperature range of 1.5 -- 300 K to investigate electronic properties of Ge$_{50}$Te$_{50}$, Ag$_{2}$Ge$_{48}$Te$_{50}$ and Sb$_{2}$Ge$_{48}$Te$_{50}$ from a microscopic point of view. From the temperature dependence of NMR shift ($K$) and nuclear spin lattice relaxation rate (1/$T_1$), we found that two bands contribute to the physical properties of the materials. One band overlaps the Fermi level providing the metallic state where no strong electron correlations are revealed by Korringa analysis. The other band is separated from the Fermi level by an energy gap of $E_{rm g}/k_{rm B}$ $sim$ 67 K, which gives rise to the semiconductor-like properties. First principle calculation revealed that the metallic band originates from the Ge vacancy while the semiconductor-like band may be related to the fine structure of the density of states near the Fermi level. Low temperature $^{125}$Te NMR data for the materials studied here clearly show that the Ag substitution increases hole concentration while Sb substitution decreases it.
In polymeric semiconductors, charge carriers are polarons, which means that the excess charge deforms the molecular structure of the polymer chain that hosts it. This effect results in distinctive signatures in the vibrational modes of the polymer. We probe polaron photo- generation dynamics at polymer:fullerene heterojunctions by monitoring its time-resolved resonance-Raman spectrum following ultrafast photoexcitation. We conclude that polarons emerge within 200 fs, which is nearly two orders of magnitude faster than exciton localisation in the neat polymer film. Surprisingly, further vibrational evolution on <50-ps timescales is modest, indicating that the polymer conformation hosting nascent polarons is not signif- icantly different from that in equilibrium. This suggests that charges are free from their mutual Coulomb potential, under which vibrational dynamics would report charge-pair relaxation. Our work addresses current debates on the photocarrier generation mechanism at organic semiconductor heterojunctions, and is, to our knowledge, the first direct probe of molecular conformation dynamics during this fundamentally important process in these materials.
186 - H.M. Benia , E. Rampi , C. Trainer 2016
Materials with strong spin-orbit coupling (SOC) have in recent years become a subject of intense research due to their potential applications in spintronics and quantum information technology. In particular, in systems which break inversion symmetry, SOC facilitates the Rashba-Dresselhaus effect, leading to a lifting of spin degeneracy in the bulk and intricate spin textures of the Bloch wave functions. Here, by combining angular resolved photoemission (ARPES) and low temperature scanning tunneling microscopy (STM) measurements with relativistic first-principles band structure calculations, we examine the role of SOC in single crystals of noncentrosymmetric BiPd. We report the detection of several Dirac surface states, one of which exhibits an extremely large spin splitting. Unlike the surface states in inversion-symmetric systems, the Dirac surface states of BiPd have completely different properties at opposite faces of the crystal and are not trivially linked by symmetry. The spin-splitting of the surface states exhibits a strong anisotropy by itself, which can be linked to the low in-plane symmetry of the surface termination.
The scope of magnetic neutron scattering has been expanded by the observation of electronic Dirac dipoles (anapoles) that are polar (parity-odd) and magnetic (time-odd). A zero-magnetization ferromagnet Sm0.976Gd0.024Al2 with a diamond-type structure presents Dirac multipoles at basis-forbidden reflections that include the standard (2, 2, 2) reflection. Magnetic amplitudes measured at four such reflections are in full accord with a structure factor calculated from the appropriate magnetic space group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا