Thermal cycling memory in phase separated manganites


Abstract in English

We have studied the irreversibility of the magnetization induced by thermal cycles in La0.5Ca0.5MnO3 manganites, which present a low temperature state characterized by the coexistence of phases. The effect is evidenced by a decrease of the magnetization after cycling the sample between 300 and 50 K. We developed a phenomenological model that allows us to correlate the value of the magnetization with the number of cycles performed. The experimental results show excellent agreement with our model, suggesting that this material could be used for the development of a device to monitor thermal changes. The effect of thermal cycling is towards an increase of the amount of the non ferromagnetic phase in the compounds and it might be directly related with the strain at the contact surface among the coexisting phases.

Download