No Arabic abstract
Online control design using a high-fidelity, full-order model for a bipedal robot can be challenging due to the size of the state space of the model. A commonly adopted solution to overcome this challenge is to approximate the full-order model (anchor) with a simplified, reduced-order model (template), while performing control synthesis. Unfortunately it is challenging to make formal guarantees about the safety of an anchor model using a controller designed in an online fashion using a template model. To address this problem, this paper proposes a method to generate safety-preserving controllers for anchor models by performing reachability analysis on template models while bounding the modeling error. This paper describes how this reachable set can be incorporated into a Model Predictive Control framework to select controllers that result in safe walking on the anchor model in an online fashion. The method is illustrated on a 5-link RABBIT model, and is shown to allow the robot to walk safely while utilizing controllers designed in an online fashion.
As autonomous systems begin to operate amongst humans, methods for safe interaction must be investigated. We consider an example of a small autonomous vehicle in a pedestrian zone that must safely maneuver around people in a free-form fashion. We investigate two key questions: How can we effectively integrate pedestrian intent estimation into our autonomous stack. Can we develop an online monitoring framework to give formal guarantees on the safety of such human-robot interactions. We present a pedestrian intent estimation framework that can accurately predict future pedestrian trajectories given multiple possible goal locations. We integrate this into a reachability-based online monitoring scheme that formally assesses the safety of these interactions with nearly real-time performance (approximately 0.3 seconds). These techniques are integrated on a test vehicle with a complete in-house autonomous stack, demonstrating effective and safe interaction in real-world experiments.
Grasp is an essential skill for robots to interact with humans and the environment. In this paper, we build a vision-based, robust and real-time robotic grasp approach with fully convolutional neural network. The main component of our approach is a grasp detection network with oriented anchor boxes as detection priors. Because the orientation of detected grasps is significant, which determines the rotation angle configuration of the gripper, we propose the Orientation Anchor Box Mechanism to regress grasp angle based on predefined assumption instead of classification or regression without any priors. With oriented anchor boxes, the grasps can be predicted more accurately and efficiently. Besides, to accelerate the network training and further improve the performance of angle regression, Angle Matching is proposed during training instead of Jaccard Index Matching. Five-fold cross validation results demonstrate that our proposed algorithm achieves an accuracy of 98.8% and 97.8% in image-wise split and object-wise split respectively, and the speed of our detection algorithm is 67 FPS with GTX 1080Ti, outperforming all the current state-of-the-art grasp detection algorithms on Cornell Dataset both in speed and accuracy. Robotic experiments demonstrate the robustness and generalization ability in unseen objects and real-world environment, with the average success rate of 90.0% and 84.2% of familiar things and unseen things respectively on Baxter robot platform.
The planning of whole-body motion and step time for bipedal locomotion is constructed as a model predictive control (MPC) problem, in which a sequence of optimization problems needs to be solved online. While directly solving these problems is extremely time-consuming, we propose a predictive gait synthesizer to offer immediate solutions. Based on the full-dimensional model, a library of gaits with different speeds and periods is first constructed offline. Then the proposed gait synthesizer generates real-time gaits at 1kHz by synthesizing the gait library based on the online prediction of centroidal dynamics. We prove that the constructed MPC problem can ensure the uniform ultimate boundedness (UUB) of the CoM states and show that our proposed gait synthesizer can provide feasible solutions to the MPC optimization problems. Simulation and experimental results on a bipedal robot with 8 degrees of freedom (DoF) are provided to show the performance and robustness of this approach.
To achieve collaborative tasks, robots in a team need to have a shared understanding of the environment and their location within it. Distributed Simultaneous Localization and Mapping (SLAM) offers a practical solution to localize the robots without relying on an external positioning system (e.g. GPS) and with minimal information exchange. Unfortunately, current distributed SLAM systems are vulnerable to perception outliers and therefore tend to use very conservative parameters for inter-robot place recognition. However, being too conservative comes at the cost of rejecting many valid loop closure candidates, which results in less accurate trajectory estimates. This paper introduces DOOR-SLAM, a fully distributed SLAM system with an outlier rejection mechanism that can work with less conservative parameters. DOOR-SLAM is based on peer-to-peer communication and does not require full connectivity among the robots. DOOR-SLAM includes two key modules: a pose graph optimizer combined with a distributed pairwise consistent measurement set maximization algorithm to reject spurious inter-robot loop closures; and a distributed SLAM front-end that detects inter-robot loop closures without exchanging raw sensor data. The system has been evaluated in simulations, benchmarking datasets, and field experiments, including tests in GPS-denied subterranean environments. DOOR-SLAM produces more inter-robot loop closures, successfully rejects outliers, and results in accurate trajectory estimates, while requiring low communication bandwidth. Full source code is available at https://github.com/MISTLab/DOOR-SLAM.git.
Multi-agent systems play an important role in modern robotics. Due to the nature of these systems, coordination among agents via communication is frequently necessary. Indeed, Perception-Action-Communication (PAC) loops, or Perception-Action loops closed over a communication channel, are a critical component of multi-robot systems. However, we lack appropriate tools for simulating PAC loops. To that end, in this paper, we introduce ROS-NetSim, a ROS package that acts as an interface between robotic and network simulators. With ROS-NetSim, we can attain high-fidelity representations of both robotic and network interactions by accurately simulating the PAC loop. Our proposed approach is lightweight, modular and adaptive. Furthermore, it can be used with many available network and physics simulators by making use of our proposed interface. In summary, ROS-NetSim is (i) Transparent to the ROS target application, (ii) Agnostic to the specific network and physics simulator being used, and (iii) Tunable in fidelity and complexity. As part of our contribution, we have made available an open-source implementation of ROS-NetSim to the community.