No Arabic abstract
We study the most practical problem setup for evaluating adversarial robustness of a machine learning system with limited access: the hard-label black-box attack setting for generating adversarial examples, where limited model queries are allowed and only the decision is provided to a queried data input. Several algorithms have been proposed for this problem but they typically require huge amount (>20,000) of queries for attacking one example. Among them, one of the state-of-the-art approaches (Cheng et al., 2019) showed that hard-label attack can be modeled as an optimization problem where the objective function can be evaluated by binary search with additional model queries, thereby a zeroth order optimization algorithm can be applied. In this paper, we adopt the same optimization formulation but propose to directly estimate the sign of gradient at any direction instead of the gradient itself, which enjoys the benefit of single query. Using this single query oracle for retrieving sign of directional derivative, we develop a novel query-efficient Sign-OPT approach for hard-label black-box attack. We provide a convergence analysis of the new algorithm and conduct experiments on several models on MNIST, CIFAR-10 and ImageNet. We find that Sign-OPT attack consistently requires 5X to 10X fewer queries when compared to the current state-of-the-art approaches, and usually converges to an adversarial example with smaller perturbation.
Deep neural networks (DNNs) have demonstrated excellent performance on various tasks, however they are under the risk of adversarial examples that can be easily generated when the target model is accessible to an attacker (white-box setting). As plenty of machine learning models have been deployed via online services that only provide query outputs from inaccessible models (e.g. Google Cloud Vision API2), black-box adversarial attacks (inaccessible target model) are of critical security concerns in practice rather than white-box ones. However, existing query-based black-box adversarial attacks often require excessive model queries to maintain a high attack success rate. Therefore, in order to improve query efficiency, we explore the distribution of adversarial examples around benign inputs with the help of image structure information characterized by a Neural Process, and propose a Neural Process based black-box adversarial attack (NP-Attack) in this paper. Extensive experiments show that NP-Attack could greatly decrease the query counts under the black-box setting.
Machine learning (ML), especially deep neural networks (DNNs) have been widely used in various applications, including several safety-critical ones (e.g. autonomous driving). As a result, recent research about adversarial examples has raised great concerns. Such adversarial attacks can be achieved by adding a small magnitude of perturbation to the input to mislead model prediction. While several whitebox attacks have demonstrated their effectiveness, which assume that the attackers have full access to the machine learning models; blackbox attacks are more realistic in practice. In this paper, we propose a Query-Efficient Boundary-based blackbox Attack (QEBA) based only on models final prediction labels. We theoretically show why previous boundary-based attack with gradient estimation on the whole gradient space is not efficient in terms of query numbers, and provide optimality analysis for our dimension reduction-based gradient estimation. On the other hand, we conducted extensive experiments on ImageNet and CelebA datasets to evaluate QEBA. We show that compared with the state-of-the-art blackbox attacks, QEBA is able to use a smaller number of queries to achieve a lower magnitude of perturbation with 100% attack success rate. We also show case studies of attacks on real-world APIs including MEGVII Face++ and Microsoft Azure.
Adversarial attacks on deep neural networks (DNNs) have been found for several years. However, the existing adversarial attacks have high success rates only when the information of the victim DNN is well-known or could be estimated by the structure similarity or massive queries. In this paper, we propose to Attack on Attention (AoA), a semantic property commonly shared by DNNs. AoA enjoys a significant increase in transferability when the traditional cross entropy loss is replaced with the attention loss. Since AoA alters the loss function only, it could be easily combined with other transferability-enhancement techniques and then achieve SOTA performance. We apply AoA to generate 50000 adversarial samples from ImageNet validation set to defeat many neural networks, and thus name the dataset as DAmageNet. 13 well-trained DNNs are tested on DAmageNet, and all of them have an error rate over 85%. Even with defenses or adversarial training, most models still maintain an error rate over 70% on DAmageNet. DAmageNet is the first universal adversarial dataset. It could be downloaded freely and serve as a benchmark for robustness testing and adversarial training.
Decision-based attacks (DBA), wherein attackers perturb inputs to spoof learning algorithms by observing solely the output labels, are a type of severe adversarial attacks against Deep Neural Networks (DNNs) requiring minimal knowledge of attackers. State-of-the-art DBA attacks relying on zeroth-order gradient estimation require an excessive number of queries. Recently, Bayesian optimization (BO) has shown promising in reducing the number of queries in score-based attacks (SBA), in which attackers need to observe real-valued probability scores as outputs. However, extending BO to the setting of DBA is nontrivial because in DBA only output labels instead of real-valued scores, as needed by BO, are available to attackers. In this paper, we close this gap by proposing an efficient DBA attack, namely BO-DBA. Different from existing approaches, BO-DBA generates adversarial examples by searching so-called emph{directions of perturbations}. It then formulates the problem as a BO problem that minimizes the real-valued distortion of perturbations. With the optimized perturbation generation process, BO-DBA converges much faster than the state-of-the-art DBA techniques. Experimental results on pre-trained ImageNet classifiers show that BO-DBA converges within 200 queries while the state-of-the-art DBA techniques need over 15,000 queries to achieve the same level of perturbation distortion. BO-DBA also shows similar attack success rates even as compared to BO-based SBA attacks but with less distortion.
We study the problem of robust learning under clean-label data-poisoning attacks, where the attacker injects (an arbitrary set of) correctly-labeled examples to the training set to fool the algorithm into making mistakes on specific test instances at test time. The learning goal is to minimize the attackable rate (the probability mass of attackable test instances), which is more difficult than optimal PAC learning. As we show, any robust algorithm with diminishing attackable rate can achieve the optimal dependence on $epsilon$ in its PAC sample complexity, i.e., $O(1/epsilon)$. On the other hand, the attackable rate might be large even for some optimal PAC learners, e.g., SVM for linear classifiers. Furthermore, we show that the class of linear hypotheses is not robustly learnable when the data distribution has zero margin and is robustly learnable in the case of positive margin but requires sample complexity exponential in the dimension. For a general hypothesis class with bounded VC dimension, if the attacker is limited to add at most $t>0$ poison examples, the optimal robust learning sample complexity grows almost linearly with $t$.