Do you want to publish a course? Click here

Go Wider: An Efficient Neural Network for Point Cloud Analysis via Group Convolutions

97   0   0.0 ( 0 )
 Added by Can Chen
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In order to achieve better performance for point cloud analysis, many researchers apply deeper neural networks using stacked Multi-Layer-Perceptron (MLP) convolutions over irregular point cloud. However, applying dense MLP convolutions over large amount of points (e.g. autonomous driving application) leads to inefficiency in memory and computation. To achieve high performance but less complexity, we propose a deep-wide neural network, called ShufflePointNet, to exploit fine-grained local features and reduce redundancy in parallel using group convolution and channel shuffle operation. Unlike conventional operation that directly applies MLPs on high-dimensional features of point cloud, our model goes wider by splitting features into groups in advance, and each group with certain smaller depth is only responsible for respective MLP operation, which can reduce complexity and allows to encode more useful information. Meanwhile, we connect communication between groups by shuffling groups in feature channel to capture fine-grained features. We claim that, multi-branch method for wider neural networks is also beneficial to feature extraction for point cloud. We present extensive experiments for shape classification task on ModelNet40 dataset and semantic segmentation task on large scale datasets ShapeNet part, S3DIS and KITTI. We further perform ablation study and compare our model to other state-of-the-art algorithms in terms of complexity and accuracy.



rate research

Read More

Point cloud analysis is very challenging, as the shape implied in irregular points is difficult to capture. In this paper, we propose RS-CNN, namely, Relation-Shape Convolutional Neural Network, which extends regular grid CNN to irregular configuration for point cloud analysis. The key to RS-CNN is learning from relation, i.e., the geometric topology constraint among points. Specifically, the convolutional weight for local point set is forced to learn a high-level relation expression from predefined geometric priors, between a sampled point from this point set and the others. In this way, an inductive local representation with explicit reasoning about the spatial layout of points can be obtained, which leads to much shape awareness and robustness. With this convolution as a basic operator, RS-CNN, a hierarchical architecture can be developed to achieve contextual shape-aware learning for point cloud analysis. Extensive experiments on challenging benchmarks across three tasks verify RS-CNN achieves the state of the arts.
Features that are equivariant to a larger group of symmetries have been shown to be more discriminative and powerful in recent studies. However, higher-order equivariant features often come with an exponentially-growing computational cost. Furthermore, it remains relatively less explored how rotation-equivariant features can be leveraged to tackle 3D shape alignment tasks. While many past approaches have been based on either non-equivariant or invariant descriptors to align 3D shapes, we argue that such tasks may benefit greatly from an equivariant framework. In this paper, we propose an effective and practical SE(3) (3D translation and rotation) equivariant network for point cloud analysis that addresses both problems. First, we present SE(3) separable point convolution, a novel framework that breaks down the 6D convolution into two separable convolutional operators alternatively performed in the 3D Euclidean and SO(3) spaces. This significantly reduces the computational cost without compromising the performance. Second, we introduce an attention layer to effectively harness the expressiveness of the equivariant features. While jointly trained with the network, the attention layer implicitly derives the intrinsic local frame in the feature space and generates attention vectors that can be integrated into different alignment tasks. We evaluate our approach through extensive studies and visual interpretations. The empirical results demonstrate that our proposed model outperforms strong baselines in a variety of benchmarks
To improve the discriminative and generalization ability of lightweight network for face recognition, we propose an efficient variable group convolutional network called VarGFaceNet. Variable group convolution is introduced by VarGNet to solve the conflict between small computational cost and the unbalance of computational intensity inside a block. We employ variable group convolution to design our network which can support large scale face identification while reduce computational cost and parameters. Specifically, we use a head setting to reserve essential information at the start of the network and propose a particular embedding setting to reduce parameters of fully-connected layer for embedding. To enhance interpretation ability, we employ an equivalence of angular distillation loss to guide our lightweight network and we apply recursive knowledge distillation to relieve the discrepancy between the teacher model and the student model. The champion of deepglint-light track of LFR (2019) challenge demonstrates the effectiveness of our model and approach. Implementation of VarGFaceNet will be released at https://github.com/zma-c-137/VarGFaceNet soon.
Convolutional neural network has made remarkable achievements in classification of idealized point cloud, however, non-idealized point cloud classification is still a challenging task. In this paper, DNDFN, namely, Dual-Neighborhood Deep Fusion Network, is proposed to deal with this problem. DNDFN has two key points. One is combination of local neighborhood and global neigh-borhood. nearest neighbor (kNN) or ball query can capture the local neighborhood but ignores long-distance dependencies. A trainable neighborhood learning meth-od called TN-Learning is proposed, which can capture the global neighborhood. TN-Learning is combined with them to obtain richer neighborhood information. The other is information transfer convolution (IT-Conv) which can learn the structural information between two points and transfer features through it. Extensive exper-iments on idealized and non-idealized benchmarks across four tasks verify DNDFN achieves the state of the arts.
The analyses relying on 3D point clouds are an utterly complex task, often involving million of points, but also requiring computationally efficient algorithms because of many real-time applications; e.g. autonomous vehicle. However, point clouds are intrinsically irregular and the points are sparsely distributed in a non-Euclidean space, which normally requires point-wise processing to achieve high performances. Although shared filter matrices and pooling layers in convolutional neural networks (CNNs) are capable of reducing the dimensionality of the problem and extracting high-level information simultaneously, grids and highly regular data format are required as input. In order to balance model performance and complexity, we introduce a novel neural network architecture exploiting local features from a manually subsampled point set. In our network, a recursive farthest point sampling method is firstly applied to efficiently cover the entire point set. Successively, we employ the k-nearest neighbours (knn) algorithm to gather local neighbourhood for each group of the subsampled points. Finally, a multiple layer perceptron (MLP) is applied on the subsampled points and edges that connect corresponding point and neighbours to extract local features. The architecture has been tested for both shape classification and segmentation using the ModelNet40 and ShapeNet part datasets, in order to show that the network achieves the best trade-off in terms of competitive performance when compared to other state-of-the-art algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا