No Arabic abstract
Low-rank tensor recovery problems have been widely studied in many applications of signal processing and machine learning. Tucker decomposition is known as one of the most popular decompositions in the tensor framework. In recent years, researchers have developed many state-of-the-art algorithms to address the problem of low-Tucker-rank tensor recovery. Motivated by the favorable properties of the stochastic algorithms, such as stochastic gradient descent and stochastic iterative hard thresholding, we aim to extend the well-known stochastic iterative hard thresholding algorithm to the tensor framework in order to address the problem of recovering a low-Tucker-rank tensor from its linear measurements. We have also developed linear convergence analysis for the proposed method and conducted a series of experiments with both synthetic and real data to illustrate the performance of the proposed method.
Recovery of low-rank matrices from a small number of linear measurements is now well-known to be possible under various model assumptions on the measurements. Such results demonstrate robustness and are backed with provable theoretical guarantees. However, extensions to tensor recovery have only recently began to be studied and developed, despite an abundance of practical tensor applications. Recently, a tensor variant of the Iterative Hard Thresholding method was proposed and theoretical results were obtained that guarantee exact recovery of tensors with low Tucker rank. In this paper, we utilize the same tensor version of the Restricted Isometry Property (RIP) to extend these results for tensors with low CANDECOMP/PARAFAC (CP) rank. In doing so, we leverage recent results on efficient approximations of CP decompositions that remove the need for challenging assumptions in prior works. We complement our theoretical findings with empirical results that showcase the potential of the approach.
The problem of recovering a low-rank matrix from the linear constraints, known as affine matrix rank minimization problem, has been attracting extensive attention in recent years. In general, affine matrix rank minimization problem is a NP-hard. In our latest work, a non-convex fraction function is studied to approximate the rank function in affine matrix rank minimization problem and translate the NP-hard affine matrix rank minimization problem into a transformed affine matrix rank minimization problem. A scheme of iterative singular value thresholding algorithm is generated to solve the regularized transformed affine matrix rank minimization problem. However, one of the drawbacks for our iterative singular value thresholding algorithm is that the parameter $a$, which influences the behaviour of non-convex fraction function in the regularized transformed affine matrix rank minimization problem, needs to be determined manually in every simulation. In fact, how to determine the optimal parameter $a$ is not an easy problem. Here instead, in this paper, we will generate an adaptive iterative singular value thresholding algorithm to solve the regularized transformed affine matrix rank minimization problem. When doing so, our new algorithm will be intelligent both for the choice of the regularized parameter $lambda$ and the parameter $a$.
We describe a simple, black-box compression format for tensors with a multiscale structure. By representing the tensor as a sum of compressed tensors defined on increasingly coarse grids, we capture low-rank structures on each grid-scale, and we show how this leads to an increase in compression for a fixed accuracy. We devise an alternating algorithm to represent a given tensor in the multiresolution format and prove local convergence guarantees. In two dimensions, we provide examples that show that this approach can beat the Eckart-Young theorem, and for dimensions higher than two, we achieve higher compression than the tensor-train format on six real-world datasets. We also provide results on the closedness and stability of the tensor format and discuss how to perform common linear algebra operations on the level of the compressed tensors.
This paper considers the completion problem for a tensor (also referred to as a multidimensional array) from limited sampling. Our greedy method is based on extending the low-rank approximation pursuit (LRAP) method for matrix completions to tensor completions. The method performs a tensor factorization using the tensor singular value decomposition (t-SVD) which extends the standard matrix SVD to tensors. The t-SVD leads to a notion of rank, called tubal-rank here. We want to recreate the data in tensors from low resolution samples as best we can here. To complete a low resolution tensor successfully we assume that the given tensor data has low tubal-rank. For tensors of low tubal-rank, we establish convergence results for our method that are based on the tensor restricted isometry property (TRIP). Our result with the TRIP condition for tensors is similar to low-rank matrix completions under the RIP condition. The TRIP condition uses the t-SVD for low tubal-rank tensors, while RIP uses the SVD for matrices. We show that a subgaussian measurement map satisfies the TRIP condition with high probability and gives an almost optimal bound on the number of required measurements. We compare the numerical performance of the proposed algorithm with those for state-of-the-art approaches on video recovery and color image recovery.
We investigate the problem of recovering jointly $r$-rank and $s$-bisparse matrices from as few linear measurements as possible, considering arbitrary measurements as well as rank-one measurements. In both cases, we show that $m asymp r s ln(en/s)$ measurements make the recovery possible in theory, meaning via a nonpractical algorithm. In case of arbitrary measurements, we investigate the possibility of achieving practical recovery via an iterative-hard-thresholding algorithm when $m asymp r s^gamma ln(en/s)$ for some exponent $gamma > 0$. We show that this is feasible for $gamma = 2$, and that the proposed analysis cannot cover the case $gamma leq 1$. The precise value of the optimal exponent $gamma in [1,2]$ is the object of a question, raised but unresolved in this paper, about head projections for the jointly low-rank and bisparse structure. Some related questions are partially answered in passing. For rank-one measurements, we suggest on arcane grounds an iterative-hard-thresholding algorithm modified to exploit the nonstandard restricted isometry property obeyed by this type of measurements.