Do you want to publish a course? Click here

Robust Field-Only Surface Integral Equations: Scattering from a Dielectric Body

177   0   0.0 ( 0 )
 Added by Qiang Sun
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A robust and efficient field-only nonsingular surface integral method to solve Maxwells equations for the components of the electric field on the surface of a dielectric scatterer is introduced. In this method, both the vector Helmholtz equation and the divergence-free constraint are satisfied inside and outside the scatterer. The divergence-free condition is replaced by an equivalent boundary condition that relates the normal derivatives of the electric field across the surface of the scatterer. Also, the continuity and jump conditions on the electric and magnetic fields are expressed in terms of the electric field across the surface of the scatterer. Together with these boundary conditions, the scalar Helmholtz equation for the components of the electric field inside and outside the scatterer is solved by a fully desingularized surface integral method. Comparing with the most popular surface integral methods based on the Stratton-Chu formulation or the PMCHWT formulation, our method is conceptually simpler and numerically straightforward because there is no need to introduce intermediate quantities such as surface currents and the use of complicated vector basis functions can be avoided altogether. Also, our method is not affected by numerical issues such as the zero frequency catastrophe and does not contain integrals with (strong) singularities. To illustrate the robustness and versatility of our method, we show examples in the Rayleigh, Mie, and geometrical optics scattering regimes. Given the symmetry between the electric field and the magnetic field, our theoretical framework can also be used to solve for the magnetic field.



rate research

Read More

A robust field-only boundary integral formulation of electromagnetics is derived without the use of surface currents that appear in the Stratton-Chu formulation. For scattering by a perfect electrical conductor (PEC), the components of the electric field are obtained directly from surface integral equation solutions of three scalar Helmholtz equations for the field components. The divergence-free condition is enforced via a boundary condition on the normal component of the field and its normal derivative. Field values and their normal derivatives at the surface of the PEC are obtained directly from surface integral equations that do not contain divergent kernels. Consequently, high-order elements with fewer degrees of freedom can be used to represent surface features to a higher precision than the traditional planar elements. This theoretical framework is illustrated with numerical examples that provide further physical insight into the role of the surface curvature in scattering problems.
The scattering of electromagnetic pulses is described using a non-singular boundary integral method to solve directly for the field components in the frequency domain, and Fourier transform is then used to obtain the complete space-time behavior. This approach is stable for wavelengths both small and large relative to characteristic length scales. Amplitudes and phases of field values can be obtained accurately on or near material boundaries. Local field enhancement effects due to multiple scattering of interest to applications in microphotonics are demonstrated.
In a recent paper, Klaseboer et al. (IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 972-977, Feb. 2017) developed a surface integral formulation of electromagnetics that does not require working with integral equations that have singular kernels. Instead of solving for the induced surface currents, the method involves surface integral solutions for 4 coupled Helmholtz equations: 3 for each Cartesian component of the electric E field plus 1 for the scalar function r*E on the surface of scatterers. Here we improve on this approach by advancing a formulation due to Yuffa et al. (IEEE Trans.Antennas Propag., vol. 66, no. 10, pp. 5274-5281, Oct. 2018) that solves for E and its normal derivative. Apart from a 25% reduction in problem size, the normal derivative of the field is often of interest in micro-photonic applications.
151 - Qiang Sun , Evert Klaseboer 2021
With the development of condensed-matter physics and nanotechnology, attention has turned to the fields near and on surfaces that result from interactions between electric dipole radiation and mesoscale structures. It is hoped that studying these fields will further our understanding of optical phenomena in nano-optics, quantum mechanics, electromagnetics and sensing using solid-state photon emitters. Here, we describe a method for implementing dynamic electric and magnetic dipoles in the frequency domain into a non-singular field-only surface method. We show that the effect of dipoles can conveniently be described as a relatively simple term in the integral equations, which fully represents how they drive the fields and interactions. Also, due to the non-singularity, our method can calculate the electric and magnetic fields on the surfaces of objects in both near and far fields with the same accuracy, which makes it an ideal tool to investigate nano-optical phenomena. The derivation of the framework is given and tested against a Mie theory alike formula. Some interesting examples are shown involving the interaction of dipoles with different types of mesoscale structures including parabolic nano-antenna and gold probes.
The force of electromagnetic radiation on a dielectric medium may be derived by a direct application of the Lorentz law of classical electrodynamics. While the lights electric field acts upon the (induced) bound charges in the medium, its magnetic field exerts a force on the bound currents. We use the example of a wedge-shaped solid dielectric, immersed in a transparent liquid and illuminated at Brewsters angle, to demonstrate that the linear momentum of the electromagnetic field within dielectrics has neither the Minkowski nor the Abraham form; rather, the correct expression for momentum density has equal contributions from both. The time rate of change of the incident momentum thus expressed is equal to the force exerted on the wedge plus that experienced by the surrounding liquid.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا