Do you want to publish a course? Click here

Subspace Clustering for Panel Data with Interactive Effects

118   0   0.0 ( 0 )
 Added by Jiangtao Duan
 Publication date 2019
  fields Economy
and research's language is English




Ask ChatGPT about the research

In this paper, a statistical model for panel data with unobservable grouped factor structures which are correlated with the regressors and the group membership can be unknown. The factor loadings are assumed to be in different subspaces and the subspace clustering for factor loadings are considered. A method called least squares subspace clustering estimate (LSSC) is proposed to estimate the model parameters by minimizing the least-square criterion and to perform the subspace clustering simultaneously. The consistency of the proposed subspace clustering is proved and the asymptotic properties of the estimation procedure are studied under certain conditions. A Monte Carlo simulation study is used to illustrate the advantages of the proposed method. Further considerations for the situations that the number of subspaces for factors, the dimension of factors and the dimension of subspaces are unknown are also discussed. For illustrative purposes, the proposed method is applied to study the linkage between income and democracy across countries while subspace patterns of unobserved factors and factor loadings are allowed.



rate research

Read More

This paper studies a panel data setting where the goal is to estimate causal effects of an intervention by predicting the counterfactual values of outcomes for treated units, had they not received the treatment. Several approaches have been proposed for this problem, including regression methods, synthetic control methods and matrix completion methods. This paper considers an ensemble approach, and shows that it performs better than any of the individual methods in several economic datasets. Matrix completion methods are often given the most weight by the ensemble, but this clearly depends on the setting. We argue that ensemble methods present a fruitful direction for further research in the causal panel data setting.
We propose a new estimator for the average causal effects of a binary treatment with panel data in settings with general treatment patterns. Our approach augments the two-way-fixed-effects specification with the unit-specific weights that arise from a model for the assignment mechanism. We show how to construct these weights in various settings, including situations where units opt into the treatment sequentially. The resulting estimator converges to an average (over units and time) treatment effect under the correct specification of the assignment model. We show that our estimator is more robust than the conventional two-way estimator: it remains consistent if either the assignment mechanism or the two-way regression model is correctly specified and performs better than the two-way-fixed-effect estimator if both are locally misspecified. This strong double robustness property quantifies the benefits from modeling the assignment process and motivates using our estimator in practice.
In this paper, we propose a varying coefficient panel data model with unobservable multiple interactive fixed effects that are correlated with the regressors. We approximate each coefficient function by B-spline, and propose a robust nonlinear iteration scheme based on the least squares method to estimate the coefficient functions of interest. We also establish the asymptotic theory of the resulting estimators under certain regularity assumptions, including the consistency, the convergence rate and the asymptotic distribution. Furthermore, we develop a least squares dummy variable method to study an important special case of the proposed model: the varying coefficient panel data model with additive fixed effects. To construct the pointwise confidence intervals for the coefficient functions, a residual-based block bootstrap method is proposed to reduce the computational burden as well as to avoid the accumulative errors. Simulation studies and a real data analysis are also carried out to assess the performance of our proposed methods.
We study identification and estimation of causal effects in settings with panel data. Traditionally researchers follow model-based identification strategies relying on assumptions governing the relation between the potential outcomes and the unobserved confounders. We focus on a novel, complementary, approach to identification where assumptions are made about the relation between the treatment assignment and the unobserved confounders. We introduce different sets of assumptions that follow the two paths to identification, and develop a double robust approach. We propose estimation methods that build on these identification strategies.
This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome variables. The method is based upon projection of simultaneous confidence bands for distribution functions constructed from fixed effects distribution regression estimators. These fixed effects estimators are debiased to deal with the incidental parameter problem. Under asymptotic sequences where both dimensions of the data set grow at the same rate, the confidence bands for the quantile functions and effects have correct joint coverage in large samples. An empirical application to gravity models of trade illustrates the applicability of the methods to network data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا