Do you want to publish a course? Click here

Spectral Lower Bounds on the I/O Complexity of Computation Graphs

164   0   0.0 ( 0 )
 Added by Saachi Jain
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We consider the problem of finding lower bounds on the I/O complexity of arbitrary computations in a two level memory hierarchy. Executions of complex computations can be formalized as an evaluation order over the underlying computation graph. However, prior methods for finding I/O lower bounds leverage the graph structures for specific problems (e.g matrix multiplication) which cannot be applied to arbitrary graphs. In this paper, we first present a novel method to bound the I/O of any computation graph using the first few eigenvalues of the graphs Laplacian. We further extend this bound to the parallel setting. This spectral bound is not only efficiently computable by power iteration, but can also be computed in closed form for graphs with known spectra. We apply our spectral method to compute closed-form analytical bounds on two computation graphs (the Bellman-Held-Karp algorithm for the traveling salesman problem and the Fast Fourier Transform), as well as provide a probabilistic bound for random Erdos Renyi graphs. We empirically validate our bound on four computation graphs, and find that our method provides tighter bounds than current empirical methods and behaves similarly to previously published I/O bounds.



rate research

Read More

This paper initiates the study of I/O algorithms (minimizing cache misses) from the perspective of fine-grained complexity (conditional polynomial lower bounds). Specifically, we aim to answer why sparse graph problems are so hard, and why the Longest Common Subsequence problem gets a savings of a factor of the size of cache times the length of a cache line, but no more. We take the reductions and techniques from complexity and fine-grained complexity and apply them to the I/O model to generate new (conditional) lower bounds as well as faster algorithms. We also prove the existence of a time hierarchy for the I/O model, which motivates the fine-grained reductions. Using fine-grained reductions, we give an algorithm for distinguishing 2 vs. 3 diameter and radius that runs in $O(|E|^2/(MB))$ cache misses, which for sparse graphs improves over the previous $O(|V|^2/B)$ running time. We give new reductions from radius and diameter to Wiener index and median. We show meaningful reductions between problems that have linear-time solutions in the RAM model. The reductions use low I/O complexity (typically $O(n/B)$), and thus help to finely capture the relationship between I/O linear time $Theta(n/B)$ and RAM linear time $Theta(n)$. We generate new I/O assumptions based on the difficulty of improving sparse graph problem running times in the I/O model. We create conjectures that the current best known algorithms for Single Source Shortest Paths (SSSP), diameter, and radius are optimal. From these I/O-model assumptions, we show that many of the known reductions in the word-RAM model can naturally extend to hold in the I/O model as well (e.g., a lower bound on the I/O complexity of Longest Common Subsequence that matches the best known running time). Finally, we prove an analog of the Time Hierarchy Theorem in the I/O model.
An assignment of colours to the vertices of a graph is stable if any two vertices of the same colour have identically coloured neighbourhoods. The goal of colour refinement is to find a stable colouring that uses a minimum number of colours. This is a widely used subroutine for graph isomorphism testing algorithms, since any automorphism needs to be colour preserving. We give an $O((m+n)log n)$ algorithm for finding a canonical version of such a stable colouring, on graphs with $n$ vertices and $m$ edges. We show that no faster algorithm is possible, under some modest assumptions about the type of algorithm, which captures all known colour refinement algorithms.
68 - Peter Hoyer 2005
Shors and Grovers famous quantum algorithms for factoring and searching show that quantum computers can solve certain computational problems significantly faster than any classical computer. We discuss here what quantum computers_cannot_ do, and specifically how to prove limits on their computational power. We cover the main known techniques for proving lower bounds, and exemplify and compare the methods.
Given positive integers $p$ and $q$, a $(p,q)$-coloring of the complete graph $K_n$ is an edge-coloring in which every $p$-clique receives at least $q$ colors. ErdH{o}s and Shelah posed the question of determining $f(n,p,q)$, the minimum number of colors needed for a $(p,q)$-coloring of $K_n$. In this paper, we expand on the color energy technique introduced by Pohoata and Sheffer to prove new lower bounds on this function, making explicit the connection between bounds on extremal numbers and $f(n,p,q)$. Using results on the extremal numbers of subdivided complete graphs, theta graphs, and subdivided complete bipartite graphs, we generalize results of Fish, Pohoata, and Sheffer, giving the first nontrivial lower bounds on $f(n,p,q)$ for some pairs $(p,q)$ and improving previous lower bounds for other pairs.
A visibility algorithm maps time series into complex networks following a simple criterion. The resulting visibility graph has recently proven to be a powerful tool for time series analysis. However its straightforward computation is time-consuming and rigid, motivating the development of more efficient algorithms. Here we present a highly efficient method to compute visibility graphs with the further benefit of flexibility: on-line computation. We propose an encoder/decoder approach, with an on-line adjustable binary search tree codec for time series as well as its corresponding decoder for visibility graphs. The empirical evidence suggests the proposed method for computation of visibility graphs offers an on-line computation solution at no additional computation time cost. The source code is available online.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا