Do you want to publish a course? Click here

Perspectives on the distribution of orbits of distant Trans-Neptunian Objects

70   0   0.0 ( 0 )
 Added by Jj Kavelaars
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Looking at the orbits of small bodies with large semimajor axes, we are compelled to see patterns. Some of these patterns are noted as strong indicators of new or hidden processes in the outer Solar System, others are substantially generated by observational biases, and still others may be completely overlooked. We can gain insight into the current and past structure of the outer Solar System through a careful examination of these orbit patterns. In this chapter, we discuss the implications of the observed orbital distribution of distant trans-Neptunian objects (TNOs). We start with some cautions on how observational biases must affect the known set of TNO orbits. Some of these biases are intrinsic to the process of discovering TNOs, while others can be reduced or eliminated through careful observational survey design. We discuss some orbital element correlations that have received considerable attention in the recent literature. We examine the known TNOs in the context of the gravitational processes that the known Solar System induces in orbital distributions. We discuss proposed new elements of the outer Solar System, posited ancient processes, and the types of TNO orbital element distributions that they predict to exist. We conclude with speculation.

rate research

Read More

This paper reports the discovery and orbital characterization of two extreme trans-Neptunian objects (ETNOs), 2016 QV$_{89}$ and 2016 QU$_{89}$, which have orbits that appear similar to that of a previously known object, 2013 UH$_{15}$. All three ETNOs have semi-major axes $aapprox 172$ AU and eccentricities $eapprox0.77$. The angular elements $(i,omega,Omega)$ vary by 6, 15, and 49 deg, respectively between the three objects. The two new objects add to the small number of TNOs currently known to have semi-major axes between 150 and 250 AU, and serve as an interesting dynamical laboratory to study the outer realm of our Solar System. Using a large ensemble of numerical integrations, we find that the orbits are expected to reside in close proximity in the $(a,e)$ phase plane for roughly 100 Myr before diffusing to more separated values. We then explore other scenarios that could influence their orbits. With aphelion distances over 300 AU, the orbits of these ETNOs extend far beyond the classical Kuiper Belt, and an order of magnitude beyond Neptune. As a result, their orbital dynamics can be affected by the proposed new Solar System member, referred to as Planet Nine in this work. With perihelion distances of 35-40 AU, these orbits are also influenced by resonant interactions with Neptune. A full assessment of any possible, new Solar System planets must thus take into account this emerging class of TNOs.
Two populations of minor bodies in the outer Solar System remain particularly elusive: Scattered Disk objects and Sedna-like objects. These populations are important dynamical tracers, and understanding the details of their spatial- and size-distributions will enhance our understanding of the formation and on-going evolution of the Solar System. By using newly-derived limits on the maximum heliocentric distances that recent pencil-beam surveys for Trans-Neptunian Objects were sensitive to, we determine new upper limits on the total numbers of distant SDOs and Sedna-like objects. While generally consistent with populations estimated from wide-area surveys, we show that for magnitude-distribution slopes of {alpha} > 0.7-1.0, these pencil-beam surveys provide stronger upper limits than current estimates in literature.
115 - S. I. Ipatov 2018
The dependences of inclinations of orbits of secondaries in the discovered trans-Neptunian binaries on the distance between the primary and the secondary, on the eccentricity of orbits of the secondary around the primary, on the ratio of diameters of the secondary and the primary, and on the elements of heliocentric orbits of these binaries are studied. These dependences are interpreted using the model of formation of a satellite system in a collision of two rarefied condensations composed of dust and/or objects less than 1 m in diameter. It is assumed in this model that a satellite system forms in the process of compression of a condensation produced in such a collision. The model of formation of a satellite system in a collision of two condensations agrees with the results of observations: according to observational data, approximately 40% of trans-Neptunian binaries have a negative angular momentum relative to their centers of mass.
Since 2013, dense and narrow rings are known around the small Centaur object Chariklo and the dwarf planet Haumea. Dense material has also been detected around the Centaur Chiron, although its nature is debated. This is the first time ever that rings are observed elsewhere than around the giant planets, suggesting that those features are more common than previously thought. The origins of those rings remain unclear. In particular, it is not known if the same generic process can explain the presence of material around Chariklo, Chiron, Haumea, or if each object has a very different history. Nonetheless, a specific aspect of small bodies is that they may possess a non-axisymmetric shape (topographic features and or elongation) that are essentially absent in giant planets. This creates strong resonances between the spin rate of the object and the mean motion of ring particles. In particular, Lindblad-type resonances tend to clear the region around the corotation (or synchronous) orbit, where the particles orbital period matches that of the body. Whatever the origin of the ring is, modest topographic features or elongations of Chariklo and Haumea explain why their rings should be found beyond the outermost 1/2 resonance, where the particles complete one revolution while the body completes two rotations. Comparison of the resonant locations relative to the Roche limit of the body shows that fast rotators are favored for being surrounded by rings. We discuss in more details the phase portraits of the 1/2 and 1/3 resonances, and the consequences of a ring presence on satellite formation.
Context: Accurate measurements of diameters of trans-Neptunian objects are extremely complicated to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters and geometric albedos. The absolute magnitude, Hv, is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, yet not many are known. Aims: Our objective is to measure accurate V band absolute magnitudes and phase coefficients for a sample of trans-Neptunian objects, many of which have been observed, and modeled, within the TNOs are cool program, one of Herschel Space Observatory key projects. Methods: We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V band absolute magnitudes and phase coefficients by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. Results: We obtained 237 new magnitudes for the 56 objects, six of them with no reported previous measurements. Including the data from the literature we report a total of 110 absolute magnitudes with their respective phase coefficients. The average value of Hv is 6.39, bracketed by a minimum of 14.60 and a maximum of -1.12. In the case of the phase coefficients we report 0.10 mag per degree as the median value and a very large dispersion, ranging from -0.88 up tp 1.35 mag per degree.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا