Do you want to publish a course? Click here

Productivity propagation with networks transformation

209   0   0.0 ( 0 )
 Added by Kazuhiko Nishimura
 Publication date 2019
  fields Economy Financial
and research's language is English




Ask ChatGPT about the research

We model sectoral production by cascading binary compounding processes. The sequence of processes is discovered in a self-similar hierarchical structure stylized in the economy-wide networks of production. Nested substitution elasticities and Hicks-neutral productivity growth are measured such that the general equilibrium feedbacks between all sectoral unit cost functions replicate the transformation of networks observed as a set of two temporally distant input-output coefficient matrices. We examine this system of unit cost functions to determine how idiosyncratic sectoral productivity shocks propagate into aggregate macroeconomic fluctuations in light of potential network transformation. Additionally, we study how sectoral productivity increments propagate into the dynamic general equilibrium, thereby allowing network transformation and ultimately producing social benefits.



rate research

Read More

96 - Shuowen Chen , Yang Ming 2021
What causes countercyclicality of industry--level productivity dispersion in the U.S.? Empirically, we construct an index of negative profit shocks and show that both productivity dispersion and R&D intensity dispersion enlarge at the onset of the shock and gradually dissipate. Theoretically, we build a duopolistic technology--ladder model in which heterogeneous R&D costs determine firms post--shock optimal behaviors and equilibrium technology gap. Quantitatively, we calibrate a parameterized model, simulate firms post--shock responses and predict that productivity dispersion is due to the low--cost firm increasing R&D efforts and the high--cost firm doing the opposite. We provide two empirical tests for this mechanism.
Agricultural research has fostered productivity growth, but the historical influence of anthropogenic climate change on that growth has not been quantified. We develop a robust econometric model of weather effects on global agricultural total factor productivity (TFP) and combine this model with counterfactual climate scenarios to evaluate impacts of past climate trends on TFP. Our baseline model indicates that anthropogenic climate change has reduced global agricultural TFP by about 21% since 1961, a slowdown that is equivalent to losing the last 9 years of productivity growth. The effect is substantially more severe (a reduction of ~30-33%) in warmer regions such as Africa and Latin America and the Caribbean. We also find that global agriculture has grown more vulnerable to ongoing climate change.
Productivity levels and growth are extremely heterogeneous among firms. A vast literature has developed to explain the origins of productivity shocks, their dispersion, evolution and their relationship to the business cycle. We examine in detail the distribution of labor productivity levels and growth, and observe that they exhibit heavy tails. We propose to model these distributions using the four parameter L{e}vy stable distribution, a natural candidate deriving from the generalised Central Limit Theorem. We show that it is a better fit than several standard alternatives, and is remarkably consistent over time, countries and sectors. In all samples considered, the tail parameter is such that the theoretical variance of the distribution is infinite, so that the sample standard deviation increases with sample size. We find a consistent positive skewness, a markedly different behaviour between the left and right tails, and a positive relationship between productivity and size. The distributional approach allows us to test different measures of dispersion and find that productivity dispersion has slightly decreased over the past decade.
Economic shocks due to Covid-19 were exceptional in their severity, suddenness and heterogeneity across industries. To study the upstream and downstream propagation of these industry-specific demand and supply shocks, we build a dynamic input-output model inspired by previous work on the economic response to natural disasters. We argue that standard production functions, at least in their most parsimonious parametrizations, are not adequate to model input substitutability in the context of Covid-19 shocks. We use a survey of industry analysts to evaluate, for each industry, which inputs were absolutely necessary for production over a short time period. We calibrate our model on the UK economy and study the economic effects of the lockdown that was imposed at the end of March and gradually released in May. Looking back at predictions that we released in May, we show that the model predicted aggregate dynamics very well, and sectoral dynamics to a large extent. We discuss the relative extent to which the models dynamics and performance was due to the choice of the production function or the choice of an exogenous shock scenario. To further explore the behavior of the model, we use simpler scenarios with only demand or supply shocks, and find that popular metrics used to predict a priori the impact of shocks, such as output multipliers, are only mildly useful.
We present a hierarchical architecture based on Recurrent Neural Networks (RNNs) for predicting disaggregated inflation components of the Consumer Price Index (CPI). While the majority of existing research is focused mainly on predicting the inflation headline, many economic and financial entities are more interested in its partial disaggregated components. To this end, we developed the novel Hierarchical Recurrent Neural Network (HRNN) model that utilizes information from higher levels in the CPI hierarchy to improve predictions at the more volatile lower levels. Our evaluations, based on a large data-set from the US CPI-U index, indicate that the HRNN model significantly outperforms a vast array of well-known inflation prediction baselines.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا