No Arabic abstract
In this paper we determine the limiting distribution of the image of the Eichler--Shimura map or equivalently the limiting joint distribution of the coefficients of the period polynomials associated to a fixed cusp form. The limiting distribution is shown to be the distribution of a certain transformation of two independent random variables both of which are equidistributed on the circle $mathbb{R}/mathbb{Z}$, where the transformation is connected to the additive twist of the cuspidal $L$-function. Furthermore we determine the asymptotic behavior of the zeroes of the period polynomials of a fixed cusp form. We use the method of moments and the main ingredients in the proofs are additive twists of $L$-functions and bounds for both individual and sums of Kloosterman sums.
Let $f$ and $g$ be weight $k$ holomorphic cusp forms and let $S_f(n)$ and $S_g(n)$ denote the sums of their first $n$ Fourier coefficients. Hafner and Ivic [HI], building on Chandrasekharan and Narasimhan [CN], proved asymptotics for $sum_{n leq X} lvert S_f(n) rvert^2$ and proved that the Classical Conjecture, that $S_f(X) ll X^{frac{k-1}{2} + frac{1}{4} + epsilon}$, holds on average over long intervals. In this paper, we introduce and obtain meromorphic continuations for the Dirichlet series $D(s, S_f times S_g) = sum S_f(n)overline{S_g(n)} n^{-(s+k-1)}$ and $D(s, S_f times overline{S_g}) = sum_n S_f(n)S_g(n) n^{-(s + k - 1)}$. Using these meromorphic continuations, we prove asymptotics for the smoothed second moment sums $sum S_f(n)overline{S_g(n)} e^{-n/X}$, proving a smoothed generalization of [HI]. We also attain asymptotics for analogous smoothed second moment sums of normalized Fourier coefficients, proving smoothed generalizations of what would be attainable from [CN]. Our methodology extends to a wide variety of weights and levels, and comparison with [CN] indicates very general cancellation between the Rankin-Selberg $L$-function $L(s, ftimes g)$ and shifted convolution sums of the coefficients of $f$ and $g$. In forthcoming works, the authors apply the results of this paper to prove the Classical Conjecture on $lvert S_f(n) rvert^2$ is true on short intervals, and to prove sign change results on ${S_f(n)}_{n in mathbb{N}}$.
We produce nontrivial asymptotic estimates for shifted sums of the form $sum a(h)b(m)c(2m-h)$, in which $a(n),b(n),c(n)$ are un-normalized Fourier coefficients of holomorphic cusp forms. These results are unconditional, but we demonstrate how to strengthen them under the Riemann Hypothesis. As an application, we show that there are infinitely many three term arithmetic progressions $n-h, n, n+h$ such that $a(n-h)a(n)a(n+h) eq 0$.
We investigate the correspondence between holomorphic automorphic forms on the upper half-plane with complex weight and parabolic cocycles. For integral weights at least 2 this correspondence is given by the Eichler integral. Knopp generalized this to real weights. We show that for weights that are not an integer at least 2 the generalized Eichler integral gives an injection into the first cohomology group with values in a module of holomorphic functions, and characterize the image. We impose no condition on the growth of the automorphic forms at the cusps. For real weights that are not an integer at least 2 we similarly characterize the space of cusp forms and the space of entire automorphic forms. We give a relation between the cohomology classes attached to holomorphic automorphic forms of real weight and the existence of harmonic lifts. A tool in establishing these results is the relation to cohomology groups with values in modules of analytic boundary germs, which are represented by harmonic functions on subsets of the upper half-plane. Even for positive integral weights cohomology with these coefficients can distinguish all holomorphic automorphic forms, unlike the classical Eichler theory.
Period polynomials have long been fruitful tools for the study of values of $L$-functions in the context of major outstanding conjectures. In this paper, we survey some facets of this study from the perspective of Eichler cohomology. We discuss ways to incorporate non-cuspidal modular forms and values of derivatives of $L$-functions into the same framework. We further review investigations of the location of zeros of the period polynomial as well as of its analogue for $L$-derivatives.
Generalizing a result of cite{Z1991, CPZ} about elliptic modular forms, we give a closed formula for the sum of all Hilbert Hecke eigenforms over a totally real number field with strict class number $1$, multiplied by their period polynomials, as a single product of the Kronecker series.