Do you want to publish a course? Click here

Minimization of non common path aberrations at the Palomar telescope using a self-coherent camera

214   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The two main advantages of exoplanet imaging are the discovery of objects in the outer part of stellar systems -- constraining models of planet formation --, and its ability to spectrally characterize the planets -- information on their atmosphere. It is however challenging because exoplanets are up to 1e10 times fainter than their star and separated by a fraction of arcsecond. Current instruments like SPHERE/VLT or GPI/Gemini detect young and massive planets because they are limited by non-common path aberrations (NCPA) that are not corrected by the adaptive optics system. To probe fainter exoplanets, new instruments capable of minimizing the NCPA is needed. One solution is the self-coherent camera (SCC) focal plane wavefront sensor, whose performance was demonstrated in laboratory attenuating the starlight by factors up to several 1e8 in space-like conditions at angular separations down to 2L/D. In this paper, we demonstrate the SCC on the sky for the first time. We installed an SCC on the stellar double coronagraph (SDC) instrument at the Hale telescope. We used an internal source to minimize the NCPA that limited the vortex coronagraph performance. We then compared to the standard procedure used at Palomar. On internal source, we demonstrated that the SCC improves the coronagraphic detection limit by a factor between 4 and 20 between 1.5 and 5L/D. Using this SCC calibration, the on-sky contrast is improved by a factor of 5 between 2 and 4L/D. These results prove the ability of the SCC to be implemented in an existing instrument. This paper highlights two interests of the self-coherent camera. First, the SCC can minimize the speckle intensity in the field of view especially the ones that are very close to the star where many exoplanets are to be discovered. Then, the SCC has a 100% efficiency with science time as each image can be used for both science and NCPA minimization.



rate research

Read More

Direct imaging and spectral characterization of exoplanets using extreme adaptive optics (ExAO) is a key science goal of future extremely large telescopes and space observatories. However, quasi-static wavefront errors will limit the sensitivity of this endeavor. Additional limitations for ground-based telescopes arise from residual AO-corrected atmospheric wavefront errors, generating millisecond-lifetime speckles that average into a halo over a long exposure. A solution to both of these problems is to use the science camera of an ExAO system as a wavefront sensor to perform a fast measurement and correction method to minimize these aberrations as soon as they are detected. We develop the framework for one such method based on the self-coherent camera (SCC) to be applied to ground-based telescopes, called Fast Atmospheric SCC Technique (FAST). We show that with the use of a specially designed coronagraph and coherent differential imaging algorithm, recording images every few milliseconds allows for a subtraction of atmospheric and static speckles while maintaining a close to unity algorithmic exoplanet throughput. Detailed simulations reach a contrast close to the photon noise limit after 30 seconds for a 1 % bandpass in H band on both 0$^text{th}$ and 5$^text{th}$ magnitude stars. For the 5th magnitude case, this is about 110 times better in raw contrast than what is currently achieved from ExAO instruments if we extrapolate for an hour of observing time, illustrating that sensitivity improvement from this method could play an essential role in the future detection and characterization of lower mass exoplanets.
144 - Steven P. Bos 2021
The exploration of circumstellar environments by means of direct imaging to search for Earth-like exoplanets is one of the challenges of modern astronomy. One of the current limitations are evolving non-common path aberrations (NCPA) that originate from optics downstream of the main wavefront sensor. The self-coherent camera (SCC) is an integrated coronagraph and focal-plane wavefront sensor that generates wavefront information-encoding Fizeau fringes in the focal plane by adding a reference hole (RH) in the Lyot stop. Here, we aim to show that by featuring a polarizer in the RH and adding a polarizing beamsplitter downstream of the Lyot stop, the RH can be placed right next to the pupil. We refer to this new variant of the SCC as the polarization-encoded self-coherent camera (PESCC). We study the performance of the PESCC analytically and numerically, and compare it, where relevant, to the SCC. We show analytically that the PESCC relaxes the requirements on the focal-plane sampling and spectral resolution with respect to the SCC by a factor of 2 and 3.5, respectively. Furthermore, we find via our numerical simulations that the PESCC has effectively access to $sim$16 times more photons, which improves the sensitivity of the wavefront sensing by a factor of $sim4$. We also show that without additional measurements, the RH point-spread function (PSF) can be calibrated using PESCC images, enabling coherent differential imaging (CDI) as a contrast-enhancing post-processing technique for every observation. In idealized simulations (clear aperture, charge two vortex coronagraph, perfect DM, no noise sources other than phase and amplitude aberrations) and in circumstances similar to those of space-based systems, we show that WFSC combined with CDI can achieve a $1sigma$ raw contrast of $sim3cdot10^{-11}- 8 cdot 10^{-11}$ between 1 and 18 $lambda / D$.
We investigate the focal plane wavefront sensing technique, known as Phase Diversity, at the scientific focal plane of a segmented mirror telescope with an adaptive optics (AO) system. We specifically consider an optical system imaging a point source in the context of (i) an artificial source within the telescope structure and (ii) from AO-corrected images of a bright star. From our simulations, we reliably disentangle segmented telescope phasing errors from non-common path aberrations (NCPA) for both a theoretical source and on-sky, AO-corrected images where we have simulated the Keck/NIRC2 system. This quantification from on-sky images is appealing, as its sensitive to the cumulative wavefront perturbations of the entire optical train; disentanglement of phasing errors and NCPA is therefore critical, where any potential correction to the primary mirror from an estimate must contain minimal NCPA contributions. Our estimates require a one-minute sequence of short-exposure, AO-corrected images; by exploiting a slight modification to the AO-loop, we find that 75 defocused images produces reliable estimates. We demonstrate a correction from our estimates to the primary and deformable mirror results in a wavefront error reduction of up to 67% and 65% for phasing errors and NCPA, respectively. If the segment phasing errors on the Keck primary are on the order of ~130 nm RMS, we show we can improve the H-band Strehl ratio by up to 10% by using our algorithm. We conclude our technique works well to estimate NCPA alone from on-sky images, suggesting it is a promising method for any AO-system.
128 - A. Vigan , M. NDiaye , K. Dohlen 2018
Circumstellar environments are now routinely observed by dedicated high-contrast imagers on large, ground-based observatories. These facilities combine extreme adaptive optics and coronagraphy to achieve unprecedented sensitivities for exoplanet detection and spectral characterization. However, non-common path aberrations (NCPA) in these coronagraphic systems represent a critical limitation for the detection of giant planets with a contrast lower than a few $10^{-6}$ at very small separations ($<$0.3$^{primeprime}$) from their host star. In 2013 we proposed ZELDA, a Zernike wavefront sensor to measure these residual quasi-static phase aberrations and a prototype was installed in SPHERE, the exoplanet imager for the VLT. In 2016, we demonstrated the ability of our sensor to provide a nanometric calibration and compensation for these aberrations on an internal source in the instrument, resulting in a contrast gain of 10 at 0.2$^{primeprime}$ in coronagraphic images. However, initial on-sky tests in 2017 did not show a tangible gain in contrast when calibrating the NCPA internally and then applying the correction on sky. In this communication, we present recent on-sky measurements to demonstrate the potential of our sensor for the NCPA compensation during observations and quantify the contrast gain in coronagraphic data.
85 - Francois Henault 2019
Non Common Path Aberrations (NCPA) are often considered as a critical issue in Adaptive Optics (AO) systems, since they introduce bias errors between real wavefronts propagating to the science detectors and those measured by the Wavefront Sensor (WFS). This is especially true when the AO system is coupled to a coronagraph instrument intended for the discovery and characterization of extra-solar planets, because useful planet signals could be mistaken with residual speckles generated by NCPA. Therefore, compensating for those errors is of prime importance and is already the scope of a few theoretical studies and experimental validations on-sky. This communication presents the conceptual optical design of a pseudo-interferometer arrangement suitable to accurate NCPA calibration, based on two WFS cooperating in real-time. The concept is applicable to both classical imaging and spectroscopy assisted by AO, and to high-contrast coronagraphs searching for habitable extra-solar planets. Practical aspects are discussed, such as the choice of WFS and coronagraph types, or specific requirements on additional hardware components, e.g. dichroic beamsplitters
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا