Do you want to publish a course? Click here

Fibers add Flavor, Part II: 5d SCFTs, Gauge Theories, and Dualities

158   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In arXiv:1906.11820 and arXiv:1907.05404 we proposed an approach based on graphs to characterize 5d superconformal field theories (SCFTs), which arise as compactifications of 6d $mathcal{N}= (1,0)$ SCFTs. The graphs, so-called combined fiber diagrams (CFDs), are derived using the realization of 5d SCFTs via M-theory on a non-compact Calabi--Yau threefold with a canonical singularity. In this paper we complement this geometric approach by connecting the CFD of an SCFT to its weakly coupled gauge theory or quiver descriptions and demonstrate that the CFD as recovered from the gauge theory approach is consistent with that as determined by geometry. To each quiver description we also associate a graph, and the embedding of this graph into the CFD that is associated to an SCFT provides a systematic way to enumerate all possible consistent weakly coupled gauge theory descriptions of this SCFT. Furthermore, different embeddings of gauge theory graphs into a fixed CFD can give rise to new UV-dualities for which we provide evidence through an analysis of the prepotential, and which, for some examples, we substantiate by constructing the M-theory geometry in which the dual quiver descriptions are manifest.



rate research

Read More

We propose a graph-based approach to 5d superconformal field theories (SCFTs) based on their realization as M-theory compactifications on singular elliptic Calabi--Yau threefolds. Field-theoretically, these 5d SCFTs descend from 6d $mathcal{N}=(1,0)$ SCFTs by circle compactification and mass deformations. We derive a description of these theories in terms of graphs, so-called Combined Fiber Diagrams, which encode salient features of the partially resolved Calabi--Yau geometry, and provides a combinatorial way of characterizing all 5d SCFTs that descend from a given 6d theory. Remarkably, these graphs manifestly capture strongly coupled data of the 5d SCFTs, such as the superconformal flavor symmetry, BPS states, and mass deformations. The capabilities of this approach are demonstrated by deriving all rank one and rank two 5d SCFTs. The full potential, however, becomes apparent when applied to theories with higher rank. Starting with the higher rank conformal matter theories in 6d, we are led to the discovery of previously unknown flavor symmetry enhancements and new 5d SCFTs.
Canonical threefold singularities in M-theory and Type IIB string theory give rise to superconformal field theories (SCFTs) in 5d and 4d, respectively. In this paper, we study canonical hypersurface singularities whose resolutions contain residual terminal singularities and/or 3-cycles. We focus on a certain class of `trinion singularities which exhibit these properties. In Type IIB, they give rise to 4d $mathcal{N}=2$ SCFTs that we call $D_p^b(G)$-trinions, which are marginal gaugings of three SCFTs with $G$ flavor symmetry. In order to understand the 5d physics of these trinion singularities in M-theory, we reduce these 4d and 5d SCFTs to 3d $mathcal{N}=4$ theories, thus determining the electric and magnetic quivers (or, more generally, quiverines). In M-theory, residual terminal singularities give rise to free sectors of massless hypermultiplets, which often are discretely gauged. These free sectors appear as `ugly components of the magnetic quiver of the 5d SCFT. The 3-cycles in the crepant resolution also give rise to free hypermultiplets, but their physics is more subtle, and their presence renders the magnetic quiver `bad. We propose a way to redeem the badness of these quivers using a class $mathcal{S}$ realization. We also discover new S-dualities between different $D_p^b(G)$-trinions. For instance, a certain $E_8$ gauging of the $E_8$ Minahan-Nemeschansky theory is S-dual to an $E_8$-shaped Lagrangian quiver SCFT.
We consider Type IIB 5-brane configurations for 5d rank 2 superconformal theories which are classified recently by geometry in arXiv:1801.04036. We propose all the 5-brane web diagrams for these rank 2 theories and show dualities between some of different gauge theories with explicit duality map of mass parameters and Coulomb branch moduli. In particular, we explicitly construct 5-brane configurations for $G_2$ gauge theory with six flavors and its dual $Sp(2)$ and $SU(3)$ gauge theories. We also present 5-brane webs for $SU(3)$ theories of Chern-Simons level greater than 5.
We classify 5d N=1 gauge theories carrying a simple gauge group that can arise by mass-deforming 5d SCFTs and 6d SCFTs (compactified on a circle, possibly with a twist). For theories having a 6d UV completion, we determine the tensor branch data of the 6d SCFT and capture the twist in terms of the tensor branch data. We also determine the dualities between these 5d gauge theories, thus determining the sets of gauge theories having a common UV completion.
Gauge theories in four dimensions can exhibit interesting low energy phenomena, such as infrared enhancements of global symmetry. We explore a class of 4d N=1 gauge theories arising from a construction that is motivated by duality walls in 5d gauge theories. Their quiver descriptions bear a resemblance to 4d theories obtained by compactifying 6d N=(1,0) superconformal field theories on a torus with fluxes, but with lower number of flavours and different number of gauge singlets and superpotentials. One of the main features of these theories is that they exhibit a flavour symmetry enhancement, and with supersymmetry enhancement for certain models, in the infrared. Properties of the superconformal fixed points of such theories are investigated in detail.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا