The color field of a quark, stripped off in a hard reaction, is regenerated via gluon radiation. The space-time development of a jet is controlled by the coherence time of gluon radiation, which for heavy quarks is subject to the dead-cone effect, suppressing gluons with small transverse momenta. As a result, heavy quarks can radiate only a small fraction of the initial energy. This explains the peculiar shape of the measured heavy quark fragmentation function, which strongly peaks at large fractional momenta z. The fragmentation length distribution, related to the fragmentation function in a model independent way, turns out to be concentrated at distances much shorter than the confinement radius. This implies that the mechanisms of heavy quark fragmentation is pure perturbative.