Do you want to publish a course? Click here

The Nearby, Young, Chi1 Fornacis Cluster: Membership, Age, and an Extraordinary Ensemble of Dusty Debris Disks

64   0   0.0 ( 0 )
 Added by Benjamin Zuckerman
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Only four star clusters are known within ~100 pc of Earth. Of these, the Chi1 For cluster has barely been studied. We use the Gaia DR2 catalog and other published data to establish the cluster membership, structure, and age. The age of and distance to the cluster are ~40 Myr and 104 pc, respectively. A remarkable, unprecedented, aspect of the cluster is the large percentage of M-type stars with warm excess infrared emission due to orbiting dust grains -- these stars lie in an annulus that straddles the tidal radius of the cluster. The Chi1 For cluster appears to be closely related to two extensive, previously known, groups of co-moving, coeval stars (the Tucana-Horologium and Columba Associations) that are spread over much of the southern sky. While Tuc-Hor and Chi1 For are comoving and coeval, the difference in the frequency of their warm dusty debris disks at M-type stars could hardly be more dramatic.



rate research

Read More

64 - B. Zuckerman 2018
The reality of a field Argus Association has been doubted in some papers in the literature. We apply Gaia DR2 data to stars previously suggested to be Argus members and conclude that a true association exists with age 40-50 Myr and containing many stars within 100 pc of Earth; Beta Leo and 49 Cet are two especially interesting members. Based on youth and proximity to Earth, Argus is one of the better nearby moving groups to target in direct imaging programs for dusty debris disks and young planets.
Because of proximity to the Galactic plane, reliable identification of members of the alpha Persei cluster is often problematic. Based primarily on membership evaluations contained in six published papers, we constructed a mostly complete list of high-fidelity members of spectral type G and earlier that lie within 3 arc degrees of the cluster center. Alpha Persei was the one nearby, rich, young open cluster not surveyed with the Spitzer Space Telescope. We examined the first and final data releases of the Wide Field Infrared Survey Explorer (WISE) and found 11, or perhaps 12, alpha Per cluster members that have excess mid-infrared emission above the stellar photosphere attributable to an orbiting dusty debris disk. The most unusual of these is V488 Per, a K-type star with an excess IR luminosity 16% (or more) of the stellar luminosity; this is a larger excess fraction than that of any other known dusty main sequence star. Much of the dust that orbits V488 Per is at a temperature of ~800 K; if these grains radiate like blackbodies, then they lie only ~0.06 AU from the star. The dust is probably the aftermath of a collision of two planetary embryos or planets with small semimajor axes; such orbital radii are similar to those of many of the transiting planets discovered by the Kepler satellite.
90 - A. Moor , A. Kospal , P. Abraham 2016
A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160$mu$m observations of 31 systems in the $beta$ Pic moving group, and in the Tucana-Horologium, Columba, Carina and Argus associations, using the Herschel Space Observatory. None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70$mu$m PACS images, the estimated radius of these disks is ~90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient Solar System.
We report Spitzer Space Telescope IRAC 3.6, 4.5, 5.8 and 8 um and MIPS 24 and 70 um observations of the 32 Ori Group, a recently discovered nearby stellar association situated towards northern Orion. The proximity of the group (~93 pc) has enabled a sensitive search for circumstellar dust around group members, and its age (~20 Myr) corresponds roughly to an epoch thought to be important for terrestrial planet formation in our own solar system. We quantify infrared excess emission due to circumstellar dust among group members, utilizing available optical (e.g. Hipparcos, Tycho) and near-IR (2MASS) photometry in addition to the Spitzer IR photometry. We report 4 out of the 14 objects which exhibit 24 um excess emission more than 4sigma above the stellar photosphere (>20%) though lacking excess emission at shorter wavelengths: HD 35656 (A0Vn), HD 36338 (F4.5), RX J0520.5+0616 (K3), and HD 35499 (F4). Two objects (HD 35656 and RX J0520.0+0612) have 70 um excesses, although the latter lacks 24 um excess emission. The 24 um disk fraction of this group is 29(+14,-9%), which is similar to previous findings for groups of comparable ages and places 32 Ori as the young stellar group with the 2nd most abundant 24 um excesses among groups lacking accreting T Tauri stars (behind only the approximately coeval Beta Pic Moving Group). We also model the infrared excess emission using circumstellar dust disk models, placing constraints on disk parameters including L_IR/L_*, T_disk, characteristic grain distance, and emitting area. The L_IR/L_* values for all the stars can be reasonably explained by steady state disk evolution.
Carina is a nearby young stellar association. So far, only a small number of stars have been clearly identified as members of this association. In this paper we reanalyse the membership of the association in light of Gaia DR2 data, in particular finding that HD 95086 is a potential member (probability of 71%). This star is noteworthy as one of the few stars that hosts both a detected debris disc and a directly imaged planet. It has previously only been considered as a potential member of the Lower Centaurus Crux (LCC) - part of the Scorpius-Centaurus association. We also reanalyse the age of the Carina association. Using a Bayesian inference code applied to infer a solution from stellar evolution models for the most probable (>99%) members of Carina, we infer an age for the association of 13.3$^{+1.1}_{-0.6}$ Myr, much younger than previous studies. Whilst we have revised HD 95086s association membership from LCC to Carina, the fact that we also find Carina to have a younger age, similar to that of LCC, means that the estimates of HD 95086bs mass remain unchanged. However, the younger age of Carina does mean that the companion to another Carina member, HD 44627 (or AB Pic), has a mass that is more clearly in the planet rather than brown dwarf range.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا