Do you want to publish a course? Click here

High contrast dual-mode optical and 13C magnetic resonance imaging in diamond particles

79   0   0.0 ( 0 )
 Added by Ashok Ajoy
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multichannel imaging -- the ability to acquire images of an object through more than one imaging mode simultaneously -- has opened interesting new perspectives in areas ranging from astronomy to medicine. Visible optics and magnetic resonance imaging (MRI) offer complementary advantages of resolution, speed and depth of penetration, and as such would be attractive in combination. In this paper, we take first steps towards marrying together optical and MR imaging in a class of biocompatible particulate materials constructed out of diamond. The particles are endowed with a high density of quantum defects (Nitrogen Vacancy centers) that under optical excitation fluoresce brightly in the visible, but also concurrently electron spin polarize. This allows the hyperpolarization of lattice 13C nuclei to make the particles over three-orders of magnitude brighter than in conventional MRI. Dual-mode optical and MR imaging permits immediate access to improvements in resolution and signal-to-noise especially in scattering environments. We highlight additional benefits in background-free imaging, demonstrating lock-in suppression by factors of 2 and 5 in optical and MR domains respectively. Ultimate limits could approach as much as two orders of magnitude in each domain. Finally, leveraging the ability of optical and MR imaging to simultaneously probe Fourier-reciprocal domains (real and k-space), we elucidate the ability to employ hybrid sub-sampling in both conjugate spaces to vastly accelerate dual-image acquisition, by as much as two orders of magnitude in practically relevant sparse-imaging scenarios. This is accompanied by a reduction in optical power by the same factor. Our work suggests interesting possibilities for the simultaneous optical and low-field MR imaging of targeted diamond nanoparticles.



rate research

Read More

A realization of the force-induced remnant magnetization spectroscopy (FIRMS) technique of specific biomolecular binding is presented where detection is accomplished with wide-field optical and diamond-based magnetometry using an ensemble of nitrogen-vacancy (NV) color centers. The technique may be adapted for massively parallel screening of arrays of nanoscale samples.
The core issue for the implementation of the diamond NV centre qubits technology is the sensitive readout of NV spin state. We have recently demonstrated the photoelectric detection of NV magnetic resonances (PDMR), anticipated to be faster and more sensitive than optical detection (ODMR). Here we report on a PDMR contrast of 9 % - three times enhanced compared to previous work - on shallow N-implanted diamond. Based on ab-initio modelling, we demonstrate a novel one-photon ionization dual-beam PDMR protocol. We predict that this scheme is significantly less vulnerable to the influence of defects such as substitutional nitrogen.
Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micron-scale detection volume and non-inductive based detection. A remaining challenge is to realize sufficiently high spectral resolution and concentration sensitivity for multidimensional NMR analysis of picoliter sample volumes. Here, we address this challenge by spatially separating the polarization and detection phases of the experiment in a microfluidic platform. We realize a spectral resolution of 0.65 +/- 0.05 Hz, an order-of-magnitude improvement over previous diamond NMR studies. We use the platform to perform two-dimensional correlation spectroscopy of liquid analytes within an effective ~20 picoliter detection volume. The use of diamond quantum sensors as in-line microfluidic NMR detectors is a significant step towards applications in mass-limited chemical analysis and single cell biology.
Optically detected magnetic resonance of nitrogen vacancy centers in diamond offers novel routes to both DC and AC magnetometry in diamond anvil cells under high pressures ($>3$ GPa). However, a serious challenge to realizing experiments has been the insertion of microwave radiation in to the sample space without screening by the gasket material. We utilize designer anvils with lithographically-deposited metallic microchannels on the diamond culet as a microwave antenna. We detected the spin resonance of an ensemble of microdiamonds under pressure, and measure the pressure dependence of the zero field splitting parameters. These experiments enable the possibility for all-optical magnetic resonance experiments on sub-$mu$L sample volumes at high pressures.
88 - A. Ajoy , K. Liu , R. Nazaryan 2018
Dynamic nuclear polarization via contact with electronic spins has emerged as an attractive route to enhance the sensitivity of nuclear magnetic resonance (NMR) beyond the traditional limits imposed by magnetic field strength and temperature. Among the various alternative implementations, the use of nitrogen vacancy (NV) centers in diamond - a paramagnetic point defect whose spin can be optically polarized at room temperature - has attracted widespread attention, but applications have been hampered by the need to align the NV axis with the external magnetic field. Here we overcome this hurdle through the combined use of continuous optical illumination and a microwave sweep over a broad frequency range. As a proof of principle, we demonstrate our approach using powdered diamond where we attain bulk 13C spin polarization in excess of 0.25 percent under ambient conditions. Remarkably, our technique acts efficiently on diamond crystals of all orientations, and polarizes nuclear spins with a sign that depends exclusively on the direction of the microwave sweep. Our work paves the way towards the use of hyperpolarized diamond particles as imaging contrast agents for biosensing and, ultimately, for the hyperpolarization of nuclear spins in arbitrary liquids brought in contact with their surface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا