No Arabic abstract
We propose an optimization-based framework to register sports field templates onto broadcast videos. For accurate registration we go beyond the prevalent feed-forward paradigm. Instead, we propose to train a deep network that regresses the registration error, and then register images by finding the registration parameters that minimize the regressed error. We demonstrate the effectiveness of our method by applying it to real-world sports broadcast videos, outperforming the state of the art. We further apply our method on a synthetic toy example and demonstrate that our method brings significant gains even when the problem is simplified and unlimited training data is available.
Coordinate-based neural representations have shown significant promise as an alternative to discrete, array-based representations for complex low dimensional signals. However, optimizing a coordinate-based network from randomly initialized weights for each new signal is inefficient. We propose applying standard meta-learning algorithms to learn the initial weight parameters for these fully-connected networks based on the underlying class of signals being represented (e.g., images of faces or 3D models of chairs). Despite requiring only a minor change in implementation, using these learned initial weights enables faster convergence during optimization and can serve as a strong prior over the signal class being modeled, resulting in better generalization when only partial observations of a given signal are available. We explore these benefits across a variety of tasks, including representing 2D images, reconstructing CT scans, and recovering 3D shapes and scenes from 2D image observations.
Point cloud registration is a fundamental problem in 3D computer vision. In this paper, we cast point cloud registration into a planning problem in reinforcement learning, which can seek the transformation between the source and target point clouds through trial and error. By modeling the point cloud registration process as a Markov decision process (MDP), we develop a latent dynamic model of point clouds, consisting of a transformation network and evaluation network. The transformation network aims to predict the new transformed feature of the point cloud after performing a rigid transformation (i.e., action) on it while the evaluation network aims to predict the alignment precision between the transformed source point cloud and target point cloud as the reward signal. Once the dynamic model of the point cloud is trained, we employ the cross-entropy method (CEM) to iteratively update the planning policy by maximizing the rewards in the point cloud registration process. Thus, the optimal policy, i.e., the transformation between the source and target point clouds, can be obtained via gradually narrowing the search space of the transformation. Experimental results on ModelNet40 and 7Scene benchmark datasets demonstrate that our method can yield good registration performance in an unsupervised manner.
Conventional stereo suffers from a fundamental trade-off between imaging volume and signal-to-noise ratio (SNR) -- due to the conflicting impact of aperture size on both these variables. Inspired by the extended depth of field cameras, we propose a novel end-to-end learning-based technique to overcome this limitation, by introducing a phase mask at the aperture plane of the cameras in a stereo imaging system. The phase mask creates a depth-dependent point spread function, allowing us to recover sharp image texture and stereo correspondence over a significantly extended depth of field (EDOF) than conventional stereo. The phase mask pattern, the EDOF image reconstruction, and the stereo disparity estimation are all trained together using an end-to-end learned deep neural network. We perform theoretical analysis and characterization of the proposed approach and show a 6x increase in volume that can be imaged in simulation. We also build an experimental prototype and validate the approach using real-world results acquired using this prototype system.
Deep neural networks (DNNs) have achieved remarkable success in computer vision; however, training DNNs for satisfactory performance remains challenging and suffers from sensitivity to empirical selections of an optimization algorithm for training. Stochastic gradient descent (SGD) is dominant in training a DNN by adjusting neural network weights to minimize the DNNs loss function. As an alternative approach, neuroevolution is more in line with an evolutionary process and provides some key capabilities that are often unavailable in SGD, such as the heuristic black-box search strategy based on individual collaboration in neuroevolution. This paper proposes a novel approach that combines the merits of both neuroevolution and SGD, enabling evolutionary search, parallel exploration, and an effective probe for optimal DNNs. A hierarchical cluster-based suppression algorithm is also developed to overcome similar weight updates among individuals for improving population diversity. We implement the proposed approach in four representative DNNs based on four publicly-available datasets. Experiment results demonstrate that the four DNNs optimized by the proposed approach all outperform corresponding ones optimized by only SGD on all datasets. The performance of DNNs optimized by the proposed approach also outperforms state-of-the-art deep networks. This work also presents a meaningful attempt for pursuing artificial general intelligence.
In problems such as sports video analytics, it is difficult to obtain accurate frame level annotations and exact event duration because of the lengthy videos and sheer volume of video data. This issue is even more pronounced in fast-paced sports such as ice hockey. Obtaining annotations on a coarse scale can be much more practical and time efficient. We propose the task of event detection in coarsely annotated videos. We introduce a multi-tower temporal convolutional network architecture for the proposed task. The network, with the help of multiple receptive fields, processes information at various temporal scales to account for the uncertainty with regard to the exact event location and duration. We demonstrate the effectiveness of the multi-receptive field architecture through appropriate ablation studies. The method is evaluated on two tasks - event detection in coarsely annotated hockey videos in the NHL dataset and event spotting in soccer on the SoccerNet dataset. The two datasets lack frame-level annotations and have very distinct event frequencies. Experimental results demonstrate the effectiveness of the network by obtaining a 55% average F1 score on the NHL dataset and by achieving competitive performance compared to the state of the art on the SoccerNet dataset. We believe our approach will help develop more practical pipelines for event detection in sports video.