Do you want to publish a course? Click here

K-TanH: Efficient TanH For Deep Learning

372   0   0.0 ( 0 )
 Added by Abhisek Kundu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose K-TanH, a novel, highly accurate, hardware efficient approximation of popular activation function TanH for Deep Learning. K-TanH consists of parameterized low-precision integer operations, such as, shift and add/subtract (no floating point operation needed) where parameters are stored in very small look-up tables that can fit in CPU registers. K-TanH can work on various numerical formats, such as, Float32 and BFloat16. High quality approximations to other activation functions, e.g., Sigmoid, Swish and GELU, can be derived from K-TanH. Our AVX512 implementation of K-TanH demonstrates $>5times$ speed up over Intel SVML, and it is consistently superior in efficiency over other approximations that use floating point arithmetic. Finally, we achieve state-of-the-art Bleu score and convergence results for training language translation model GNMT on WMT16 data sets with approximate TanH obtained via K-TanH on BFloat16 inputs.



rate research

Read More

Recently, neuro-inspired episodic control (EC) methods have been developed to overcome the data-inefficiency of standard deep reinforcement learning approaches. Using non-/semi-parametric models to estimate the value function, they learn rapidly, retrieving cached values from similar past states. In realistic scenarios, with limited resources and noisy data, maintaining meaningful representations in memory is essential to speed up the learning and avoid catastrophic forgetting. Unfortunately, EC methods have a large space and time complexity. We investigate different solutions to these problems based on prioritising and ranking stored states, as well as online clustering techniques. We also propose a new dynamic online k-means algorithm that is both computationally-efficient and yields significantly better performance at smaller memory sizes; we validate this approach on classic reinforcement learning environments and Atari games.
Deep neural networks (DNNs) have surpassed human-level accuracy in a variety of cognitive tasks but at the cost of significant memory/time requirements in DNN training. This limits their deployment in energy and memory limited applications that require real-time learning. Matrix-vector multiplications (MVM) and vector-vector outer product (VVOP) are the two most expensive operations associated with the training of DNNs. Strategies to improve the efficiency of MVM computation in hardware have been demonstrated with minimal impact on training accuracy. However, the VVOP computation remains a relatively less explored bottleneck even with the aforementioned strategies. Stochastic computing (SC) has been proposed to improve the efficiency of VVOP computation but on relatively shallow networks with bounded activation functions and floating-point (FP) scaling of activation gradients. In this paper, we propose ESSOP, an efficient and scalable stochastic outer product architecture based on the SC paradigm. We introduce efficient techniques to generalize SC for weight update computation in DNNs with the unbounded activation functions (e.g., ReLU), required by many state-of-the-art networks. Our architecture reduces the computational cost by re-using random numbers and replacing certain FP multiplication operations by bit shift scaling. We show that the ResNet-32 network with 33 convolution layers and a fully-connected layer can be trained with ESSOP on the CIFAR-10 dataset to achieve baseline comparable accuracy. Hardware design of ESSOP at 14nm technology node shows that, compared to a highly pipelined FP16 multiplier design, ESSOP is 82.2% and 93.7% better in energy and area efficiency respectively for outer product computation.
An important linear algebra routine, GEneral Matrix Multiplication (GEMM), is a fundamental operator in deep learning. Compilers need to translate these routines into low-level code optimized for specific hardware. Compiler-level optimization of GEMM has significant performance impact on training and executing deep learning models. However, most deep learning frameworks rely on hardware-specific operator libraries in which GEMM optimization has been mostly achieved by manual tuning, which restricts the performance on different target hardware. In this paper, we propose two novel algorithms for GEMM optimization based on the TVM framework, a lightweight Greedy Best First Search (G-BFS) method based on heuristic search, and a Neighborhood Actor Advantage Critic (N-A2C) method based on reinforcement learning. Experimental results show significant performance improvement of the proposed methods, in both the optimality of the solution and the cost of search in terms of time and fraction of the search space explored. Specifically, the proposed methods achieve 24% and 40% savings in GEMM computation time over state-of-the-art XGBoost and RNN methods, respectively, while exploring only 0.1% of the search space. The proposed approaches have potential to be applied to other operator-level optimizations.
122 - Jihun Hamm , Yung-Kyun Noh 2018
Minimax optimization plays a key role in adversarial training of machine learning algorithms, such as learning generative models, domain adaptation, privacy preservation, and robust learning. In this paper, we demonstrate the failure of alternating gradient descent in minimax optimization problems due to the discontinuity of solutions of the inner maximization. To address this, we propose a new epsilon-subgradient descent algorithm that addresses this problem by simultaneously tracking K candidate solutions. Practically, the algorithm can find solutions that previous saddle-point algorithms cannot find, with only a sublinear increase of complexity in K. We analyze the conditions under which the algorithm converges to the true solution in detail. A significant improvement in stability and convergence speed of the algorithm is observed in simple representative problems, GAN training, and domain-adaptation problems.
Training of large-scale deep neural networks is often constrained by the available computational resources. We study the effect of limited precision data representation and computation on neural network training. Within the context of low-precision fixed-point computations, we observe the rounding scheme to play a crucial role in determining the networks behavior during training. Our results show that deep networks can be trained using only 16-bit wide fixed-point number representation when using stochastic rounding, and incur little to no degradation in the classification accuracy. We also demonstrate an energy-efficient hardware accelerator that implements low-precision fixed-point arithmetic with stochastic rounding.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا