Sparse sampling and tensor network representation of two-particle Greens functions


Abstract in English

Many-body calculations at the two-particle level require a compact representation of two-particle Greens functions. In this paper, we introduce a sparse sampling scheme in the Matsubara frequency domain as well as a tensor network representation for two-particle Greens functions. The sparse sampling is based on the intermediate representation basis and allows an accurate extraction of the generalized susceptibility from a reduced set of Matsubara frequencies. The tensor network representation provides a system independent way to compress the information carried by two-particle Greens functions. We demonstrate efficiency of the present scheme for calculations of static and dynamic susceptibilities in single- and two-band Hubbard models in the framework of dynamical mean-field theory.

Download