No Arabic abstract
In cognitive psychology, automatic and self-reinforcing irrational thought patterns are known as cognitive distortions. Left unchecked, patients exhibiting these types of thoughts can become stuck in negative feedback loops of unhealthy thinking, leading to inaccurate perceptions of reality commonly associated with anxiety and depression. In this paper, we present a machine learning framework for the automatic detection and classification of 15 common cognitive distortions in two novel mental health free text datasets collected from both crowdsourcing and a real-world online therapy program. When differentiating between distorted and non-distorted passages, our model achieved a weighted F1 score of 0.88. For classifying distorted passages into one of 15 distortion categories, our model yielded weighted F1 scores of 0.68 in the larger crowdsourced dataset and 0.45 in the smaller online counseling dataset, both of which outperformed random baseline metrics by a large margin. For both tasks, we also identified the most discriminative words and phrases between classes to highlight common thematic elements for improving targeted and therapist-guided mental health treatment. Furthermore, we performed an exploratory analysis using unsupervised content-based clustering and topic modeling algorithms as first efforts towards a data-driven perspective on the thematic relationship between similar cognitive distortions traditionally deemed unique. Finally, we highlight the difficulties in applying mental health-based machine learning in a real-world setting and comment on the implications and benefits of our framework for improving automated delivery of therapeutic treatment in conjunction with traditional cognitive-behavioral therapy.
The recent growth of digital interventions for mental well-being prompts a call-to-arms to explore the delivery of personalised recommendations from a users perspective. In a randomised placebo study with a two-way factorial design, we analysed the difference between an autonomous user experience as opposed to personalised guidance, with respect to both users preference and their actual usage of a mental well-being app. Furthermore, we explored users preference in sharing their data for receiving personalised recommendations, by juxtaposing questionnaires and mobile sensor data. Interestingly, self-reported results indicate the preference for personalised guidance, whereas behavioural data suggests that a blend of autonomous choice and recommended activities results in higher engagement. Additionally, although users reported a strong preference of filling out questionnaires instead of sharing their mobile data, the data source did not have any impact on the actual app use. We discuss the implications of our findings and provide takeaways for designers of mental well-being applications.
Outcome-driven studies designed to evaluate potential effects of games and apps designed to promote healthy eating and exercising remain limited either targeting design or usability factors while omitting out health-based outcomes altogether, or tend to be too narrowly focuses on behavioral outcomes within a short periods of time thereby less likely to influence longitudinal factors that can help sustain healthy habits. In this paper we argue for a unified approach to tackle behavioral change through focusing on both health outcomes and cognitive precursors, such as players attitudes and behaviors around healthy eating and exercising, motivation stage and knowledge and awareness about nutrition or physical activity. Key findings from a 3-month long game play study, with 47 female participants indicate that there are clear shifts in players perceptions about health and knowledge about eating. This paper extends our current understandings about approaches for evaluating health games and presents a unified approach to assess effectiveness of game-based health interventions through combining health-based outcomes and shifts in players cognitive precursors.
Many people struggling with mental health issues are unable to access adequate care due to high costs and a shortage of mental health professionals, leading to a global mental health crisis. Online mental health communities can help mitigate this crisis by offering a scalable, easily accessible alternative to in-person sessions with therapists or support groups. However, people seeking emotional or psychological support online may be especially vulnerable to the kinds of antisocial behavior that sometimes occur in online discussions. Moderation can improve online discourse quality, but we lack an understanding of its effects on online mental health conversations. In this work, we leveraged a natural experiment, occurring across 200,000 messages from 7,000 online mental health conversations, to evaluate the effects of moderation on online mental health discussions. We found that participation in group mental health discussions led to improvements in psychological perspective, and that these improvements were larger in moderated conversations. The presence of a moderator increased user engagement, encouraged users to discuss negative emotions more candidly, and dramatically reduced bad behavior among chat participants. Moderation also encouraged stronger linguistic coordination, which is indicative of trust building. In addition, moderators who remained active in conversations were especially successful in keeping conversations on topic. Our findings suggest that moderation can serve as a valuable tool to improve the efficacy and safety of online mental health conversations. Based on these findings, we discuss implications and trade-offs involved in designing effective online spaces for mental health support.
Traditionally, the regime of mental healthcare has followed an episodic psychotherapy model wherein patients seek care from a provider through a prescribed treatment plan developed over multiple provider visits. Recent advances in wearable and mobile technology have generated increased interest in digital mental healthcare that enables individuals to address episodic mental health symptoms. However, these efforts are typically reactive and symptom-focused and do not provide comprehensive, wrap-around, customized treatments that capture an individuals holistic mental health model as it unfolds over time. Recognizing that each individual is unique, we present the notion of Personalized Mental Health Navigation (MHN): a therapist-in-the-loop, cybernetic goal-based system that deploys a continuous cyclic loop of measurement, estimation, guidance, to steer the individuals mental health state towards a healthy zone. We outline the major components of MHN that is premised on the development of an individuals personal mental health state, holistically represented by a high-dimensional cover of multiple knowledge layers such as emotion, biological patterns, sociology, behavior, and cognition. We demonstrate the feasibility of the personalized MHN approach via a 12-month pilot case study for holistic stress management in college students and highlight an instance of a therapist-in-the-loop intervention using MHN for monitoring, estimating, and proactively addressing moderately severe depression over a sustained period of time. We believe MHN paves the way to transform mental healthcare from the current passive, episodic, reactive process (where individuals seek help to address symptoms that have already manifested) to a continuous and navigational paradigm that leverages a personalized model of the individual, promising to deliver timely interventions to individuals in a holistic manner.
Mental health challenges are thought to afflict around 10% of the global population each year, with many going untreated due to stigma and limited access to services. Here, we explore trends in words and phrases related to mental health through a collection of 1- , 2-, and 3-grams parsed from a data stream of roughly 10% of all English tweets since 2012. We examine temporal dynamics of mental health language, finding that the popularity of the phrase mental health increased by nearly two orders of magnitude between 2012 and 2018. We observe that mentions of mental health spike annually and reliably due to mental health awareness campaigns, as well as unpredictably in response to mass shootings, celebrities dying by suicide, and popular fictional stories portraying suicide. We find that the level of positivity of messages containing mental health, while stable through the growth period, has declined recently. Finally, we use the ratio of original tweets to retweets to quantify the fraction of appearances of mental health language due to social amplification. Since 2015, mentions of mental health have become increasingly due to retweets, suggesting that stigma associated with discussion of mental health on Twitter has diminished with time.