No Arabic abstract
This article summarizes some of the most important scientific contributions of Murray Gell-Mann (1929-2019). (Invited article for Current Science, Indian Academy of Sciences.)
The well known Nakano-Nishijima-Gell-Mann (NNG) formula relates certain quantum numbers of elementary particles to their charge number. This equation, which phenomenologically introduces the quantum numbers $I_z$ (isospin), $S$ (strangeness), etc., is constructed using group theory with real numbers $mathbb{R}$. But, using a discrete Galois field $mathbb{F}_p$ instead of $mathbb{R}$ and assuring the fundamental invariance laws such as unitarity, Lorentz invariance, and gauge invariance, we derive the NNG formula deductively from Meson (two quarks) and Baryon (three quarks) representations in a unified way. Moreover, we show that quark confinement ascribes to the inevitable fractionality caused by coprimeness between half-integer (1/2) of isospin and number of composite particles (e.g. three).
The Gell-Mann grading, one of the four gradings of sl(3,C) that cannot be further refined, is considered as the initial grading for the graded contraction procedure. Using the symmetries of the Gell-Mann grading, the system of contraction equations is reduced and solved. Each non-trivial solution of this system determines a Lie algebra which is not isomorphic to the original algebra sl(3,C). The resulting 53 contracted algebras are divided into two classes - the first is represented by the algebras which are also continuous Inonu-Wigner contractions, the second is formed by the discrete graded contractions.
Next to leading order corrections to the $SU(3) times SU(3)$ Gell-Mann-Oakes-Renner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the FESR are used to suppress the contribution of the kaon radial excitations to the hadronic spectral function, one with local and the other with global constraints. The result for the pseudoscalar current correlator at zero momentum is $psi_5(0) = (2.8 pm 0.3) times 10^{-3} GeV^{4}$, leading to the chiral corrections to GMOR: $delta_K = (55 pm 5)%$. The resulting uncertainties are mostly due to variations in the upper limit of integration in the FESR, within the stability regions, and to a much lesser extent due to the uncertainties in the strong coupling and the strange quark mass. Higher order quark mass corrections, vacuum condensates, and the hadronic resonance sector play a negligible role in this determination. These results confirm an independent determination from chiral perturbation theory giving also very large corrections, i.e. roughly an order of magnitude larger than the corresponding corrections in chiral $SU(2) times SU(2)$. Combining these results with our previous determination of the corrections to GMOR in chiral $SU(2) times SU(2)$, $delta_pi$, we are able to determine two low energy constants of chiral perturbation theory, i.e. $L^r_8 = (1.0 pm 0.3) times 10^{-3}$, and $H^r_2 = - (4.7 pm 0.6) times 10^{-3}$, both at the scale of the $rho$-meson mass.
The next to leading order chiral corrections to the $SU(2)times SU(2)$ Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar correlator to five-loop order in perturbative QCD, together with new finite energy sum rules (FESR) incorporating polynomial, Legendre type, integration kernels. The purpose of these kernels is to suppress hadronic contributions in the region where they are least known. This reduces considerably the systematic uncertainties arising from the lack of direct experimental information on the hadronic resonance spectral function. Three different methods are used to compute the FESR contour integral in the complex energy (squared) s-plane, i.e. Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a fixed renormalization scale scheme. We obtain for the corrections to the GMOR relation, $delta_pi$, the value $delta_pi = (6.2, pm 1.6)%$. This result is substantially more accurate than previous determinations based on QCD sum rules; it is also more reliable as it is basically free of systematic uncertainties. It implies a light quark condensate $<0|bar{u} u|0> simeq <0|bar{d} d|0> equiv <0|bar{q} q|0>|_{2,mathrm{GeV}} = (- 267 pm 5 MeV)^3$. As a byproduct, the chiral perturbation theory (unphysical) low energy constant $H^r_2$ is predicted to be $H^r_2 ( u_chi = M_rho) = - (5.1 pm 1.8)times 10^{-3}$, or $H^r_2 ( u_chi = M_eta) = - (5.7 pm 2.0)times 10^{-3}$.
We formulate and prove the main properties of the generalized Gell-Mann representation for traceless qudit observables with eigenvalues in $[-1,1]$ and analyze via this representation violation of the CHSH inequality by a general two-qudit state. For the maximal value of the CHSH expectation in a two-qudit state with an arbitrary qudit dimension $dgeq2$, this allows us to find two new bounds, lower and upper, expressed via the spectral properties of the correlation matrix for a two-qudit state. We have not yet been able to specify if the new upper bound improves the Tsirelson upper bound for each two-qudit state. However, this is the case for all two-qubit states, where the new lower bound and the new upper bound coincide and reduce to the precise two-qubit CHSH result of Horodeckis, and also, for the Greenberger-Horne-Zeilinger (GHZ) state with an odd $dgeq2,$ where the new upper bound is less than the upper bound of Tsirelson. Moreover, we explicitly find the correlation matrix for the two-qudit GHZ state and prove that, for this state, the new upper bound is attained for each dimension $dgeq2$ and this specifies the following new result: for the two-qudit GHZ state, the maximum of the CHSH expectation over traceless qudit observables with eigenvalues in $[-1,1]$ is equal to $2sqrt{2}$ if $dgeq2$ is even and to $frac{2(d-1)}{d}sqrt{2}$ if $d>2$ is odd.