No Arabic abstract
In this article, we derive a general form of local volume-averaging theory and apply it to a model of zinc-air conversion batteries. Volume-averaging techniques are frequently used for the macroscopic description of micro-porous electrodes. We extend the existing method by including reactions between different phases and time-dependent volume fractions of the solid phases as these are continuously dissolved and reconstructed during operation of conversion batteries. We find that the constraint of incompressibility for multi-component fluids causes numerical instabilities in simulations of zinc-air battery cells. Therefore, we develop a stable sequential semi-implicit algorithm which converges against the fully implicit solution. Our method reduces the coupling of the variables by splitting the system of equations and introducing an additional iteration step.
In this article, we derive and discuss a physics-based model for impedance spectroscopy of lithium batteries. Our model for electrochemical cells with planar electrodes takes into account the solid-electrolyte interphase (SEI) as porous surface film. We present two improvements over standard impedance models. Firstly, our model is based on a consistent description of lithium transport through electrolyte and SEI. We use well-defined transport parameters, e.g., transference numbers, and consider convection of the center-of-mass. Secondly, we solve our model equations analytically and state the full transport parameter dependence of the impedance signals. Our consistent model results in an analytic expression for the cell impedance including bulk and surface processes. The impedance signals due to concentration polarizations highlight the importance of electrolyte convection in concentrated electrolytes. We simplify our expression for the complex impedance and compare it to common equivalent circuit models. Such simplified models are good approximations in concise parameter ranges. Finally, we compare our model with experiments of lithium metal electrodes and find large transference numbers for lithium ions. This analysis reveals that lithium-ion transport through the SEI has solid electrolyte character.
Synthetic turbulence models are a useful tool that provide realistic representations of turbulence, necessary to test theoretical results, to serve as background fields in some numerical simulations, and to test analysis tools. Models of 1D and 3D synthetic turbulence previously developed still required large computational resources. A new wavelet-based model of synthetic turbulence, able to produce a field with tunable spectral law, intermittency and anisotropy, is presented here. The rapid algorithm introduced, based on the classic $p$-model of intermittent turbulence, allows to reach a broad spectral range using a modest computational effort. The model has been tested against the standard diagnostics for intermittent turbulence, i.e. the spectral analysis, the scale-dependent statistics of the field increments, and the multifractal analysis, all showing an excellent response.
Aqueous zinc-air batteries (ZABs) are a low-cost, safe, and sustainable technology for stationary energy storage. ZABs with pH-buffered near-neutral electrolytes have the potential for longer lifetime compared to traditional alkaline ZABs due to the slower absorption of carbonates at non-alkaline pH values. However, existing near-neutral electrolytes often contain halide salts, which are corrosive and threaten the precipitation of ZnO as the dominant discharge product. This paper presents a method for designing halide-free aqueous ZAB electrolytes using thermodynamic descriptors to computationally screen components. The dynamic performance of a ZAB with one possible halide-free aqueous electrolyte based on organic salts is simulated using an advanced method of continuum modeling, and the results are validated by experiments. XRD, SEM, and EDS measurements of Zn electrodes show that ZnO is the dominant discharge product, and operando pH measurements confirm the stability of the electrolyte pH during cell cycling. Long-term full cell cycling tests are performed, and RRDE measurements elucidate the mechanism of ORR and OER. Our analysis shows that aqueous electrolytes containing organic salts could be a promising field of research for zinc-based batteries, due to their Zn$^{2+}$ chelating and pH buffering properties. We discuss the remaining challenges including the electrochemical stability of the electrolyte components.
Implementing multicomponent diffusion models in reacting-flow simulations is computationally expensive due to the challenges involved in calculating diffusion coefficients. Instead, mixture-averaged diffusion treatments are typically used to avoid these costs. However, to our knowledge, the accuracy and appropriateness of the mixture-averaged diffusion models has not been verified for three-dimensional turbulent premixed flames. In this study we propose a fast,efficient, low-memory algorithm and use that to evaluate the role of multicomponent mass diffusion in reacting-flow simulations. Direct numerical simulation of these flames is performed by implementing the Stefan-Maxwell equations in NGA. A semi-implicit algorithm decreases the computational expense of inverting the full multicomponent ordinary diffusion array while maintaining accuracy and fidelity. We first verify the method by performing one-dimensional simulations of premixed hydrogen flames and compare with matching cases in Cantera. We demonstrate the algorithm to be stable, and its performance scales approximately with the number of species squared. Then, as an initial study of multicomponent diffusion, we simulate premixed, three-dimensional turbulent hydrogen flames, neglecting secondary Soret and Dufour effects. Simulation conditions are carefully selected to match previously published results and ensure valid comparison. Our results show that using the mixture-averaged diffusion assumption leads to a 15% under-prediction of the normalized turbulent flame speed for a premixed hydrogen-air flame. This difference in the turbulent flame speed motivates further study into using the mixture-averaged diffusion assumption for DNS of moderate-to-high Karlovitz number flames.
Quantum chemistry simulations of four industrially relevant molecules are reported. Dissociation curves and dipole moments are reported for lithium hydride (LiH), hydrogen sulfide (H2S), lithium hydrogen sulfide (LiSH) and lithium sulfide (Li2S). Herein, we demonstrate the ability to calculate dipole moments using up to 21 qubits on a quantum simulator for a lithium sulfur salt molecule, and demonstrate the ability to calculate the dipole moment of the LiH molecule on the IBM Q Valencia device using four qubits. This is the first example to the best of our knowledge of dipole moment calculations being performed on quantum hardware.