Do you want to publish a course? Click here

Generation and Application of Constrained Interaction Test Suites Using Base Forbidden Tuples With Mixed Neighborhood Tabu Search

162   0   0.0 ( 0 )
 Added by Bestoun Ahmed Dr.
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Nowadays, ensuring the quality becomes challenging for most modern software systems when constraints are given for the combinations of configurations. Combinatorial interaction strategies can systematically reduce the number of test cases to construct a minimal test suite without affecting the effectiveness of the tests. This paper presents a new efficient search-based strategy to generate constrained interaction test suites to cover all possible combinations. The paper also shows a new application of constrained interaction testing in software fault searches. The proposed strategy initially generates the set of all possible t-tuple combinations; then, it filters out the set by removing the forbidden t-tuples using the base forbidden tuple (BFT) approach. The strategy also utilizes a mixed neighborhood tabu search (TS) to construct optimal or near-optimal constrained test suites. The efficiency of the proposed method is evaluated through a comparison against two well-known state-of-the-art tools. The evaluation consists of three sets of experiments for 35 standard benchmarks. Additionally, the effectiveness and quality of the results are assessed using a real-world case study. Experimental results show that the proposed strategy outperforms one of the competitive strategies, ACTS, for approximately 83% of the benchmarks and achieves similar results to CASA for 65% of the benchmarks when the interaction strength is 2. For an interaction strength of 3, the proposed method outperforms other competitive strategies for approximately 60% and 42% of the benchmarks. The proposed strategy can also generate constrained interaction test suites for an interaction strength of 4, which is not possible for many strategies. Real-world case study shows that the generated test suites can effectively detect injected faults using mutation testing.



rate research

Read More

In this paper, we propose to use production executions to improve the quality of testing for certain methods of interest for developers. These methods can be methods that are not covered by the existing test suite, or methods that are poorly tested. We devise an approach called PANKTI which monitors applications as they execute in production, and then automatically generates differential unit tests, as well as derived oracles, from the collected data. PANKTIs monitoring and generation focuses on one single programming language, Java. We evaluate it on three real-world, open-source projects: a videoconferencing system, a PDF manipulation library, and an e-commerce application. We show that PANKTI is able to generate differential unit tests by monitoring target methods in production, and that the generated tests improve the quality of the test suite of the application under consideration.
A major challenge in testing software product lines is efficiency. In particular, testing a product line should take less effort than testing each and every product individually. We address this issue in the context of input-output conformance testing, which is a formal theory of model-based testing. We extend the notion of conformance testing on input-output featured transition systems with the novel concept of spinal test suites. We show how this concept dispenses with retesting the common behavior among different, but similar, products of a software product line.
The Flexible Job Shop Scheduling Problem (FJSP) is a combinatorial problem that continues to be studied extensively due to its practical implications in manufacturing systems and emerging new variants, in order to model and optimize more complex situations that reflect the current needs of the industry better. This work presents a new meta-heuristic algorithm called GLNSA (Global-local neighborhood search algorithm), in which the neighborhood concepts of a cellular automaton are used, so that a set of leading solutions called smart_cells generates and shares information that helps to optimize instances of FJSP. The GLNSA algorithm is complemented with a tabu search that implements a simplified version of the Nopt1 neighborhood defined in [1] to complement the optimization task. The experiments carried out show a satisfactory performance of the proposed algorithm, compared with other results published in recent algorithms and widely cited in the specialized bibliography, using 86 test problems, improving the optimal result reported in previous works in two of them.
This paper describes an optimisation methodology that has been specifically developed for engineering design problems. The methodology is based on a Tabu search (TS) algorithm that has been shown to find high quality solutions with a relatively low number of objective function evaluations. Whilst the methodology was originally intended for a small range of design problems it has since been successfully applied to problems from different domains with no alteration to the underlying method. This paper describes the method and its application to three different problems. The first is from the field of structural design, the second relates to the design of electromagnetic pole shapes and the third involves the design of turbomachinery blades.
Automated unit test case generation tools facilitate test-driven development and support developers by suggesting tests intended to identify flaws in their code. Existing approaches are usually guided by the test coverage criteria, generating synthetic test cases that are often difficult for developers to read or understand. In this paper we propose AthenaTest, an approach that aims to generate unit test cases by learning from real-world focal methods and developer-written testcases. We formulate unit test case generation as a sequence-to-sequence learning task, adopting a two-step training procedure consisting of denoising pretraining on a large unsupervised Java corpus, and supervised finetuning for a downstream translation task of generating unit tests. We investigate the impact of natural language and source code pretraining, as well as the focal context information surrounding the focal method. Both techniques provide improvements in terms of validation loss, with pretraining yielding 25% relative improvement and focal context providing additional 11.1% improvement. We also introduce Methods2Test, the largest publicly available supervised parallel corpus of unit test case methods and corresponding focal methods in Java, which comprises 780K test cases mined from 91K open-source repositories from GitHub. We evaluate AthenaTest on five defects4j projects, generating 25K passing test cases covering 43.7% of the focal methods with only 30 attempts. We execute the test cases, collect test coverage information, and compare them with test cases generated by EvoSuite and GPT-3, finding that our approach outperforms GPT-3 and has comparable coverage w.r.t. EvoSuite. Finally, we survey professional developers on their preference in terms of readability, understandability, and testing effectiveness of the generated tests, showing overwhelmingly preference towards AthenaTest.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا