No Arabic abstract
Almost two decades ago Zapponi introduced a notion of orientability of a clean dessin denfant, based on an orientation of the embedded bipartite graph. We extend this concept, which we call Z-orientability to distinguish it from the traditional topological definition, to the wider context of all dessins, and we use it to define a concept of twist orientability, which also takes account of the Z-orientability properties of those dessins obtained by permuting the roles of white and black vertices and face-centres. We observe that these properties are Galois-invariant, and we study the extent to which they are determined by the standard invariants such as the passport and the monodromy and automorphism groups. We find that in general they are independent of these invariants, but in the case of regular dessins they are determined by the monodromy group.
It is known that every finite group can be represented as the full group of automorphisms of a suitable compact dessin denfant. In this paper, we give a constructive and easy proof that the same holds for any countable group by considering non-compact dessins. Moreover, we show that any tame action of a countable group is so realizable.
Riemanns Existence Theorem gives the following bijections: (1) Isomorphism classes of Belyi maps of degree $d$. (2) Equivalence classes of generating systems of degree $d$. (3) Isomorphism classes of dessins denfants with $d$ edges. In previous work, the first author and collaborators exploited the correspondence between Belyi maps and their generating systems to provide explicit equations for two infinite families of dynamical Belyi maps. We complete this picture by describing the dessins denfants for these two families.
We show how to map Grothendiecks dessins denfants to algebraic curves as Seiberg-Witten curves, then use the mirror map and the AGT map to obtain the corresponding 4d $mathcal{N}=2$ supersymmetric instanton partition functions and 2d Virasoro conformal blocks. We explicitly demonstrate the 6 trivalent dessins with 4 punctures on the sphere. We find that the parametrizations obtained from a dessin should be related by certain duality for gauge theories. Then we will discuss that some dessins could correspond to conformal blocks satisfying certain rules in different minimal models.
We present a number of examples to illustrate the use of small quotient dessins as substitutes for their often much larger and more complicated Galois (minimal regular) covers. In doing so we employ several useful group-theoretic techniques, such as the Frobenius character formula for counting triples in a finite group, pointing out some common traps and misconceptions associated with them. Although our examples are all chosen from Hurwitz curves and groups, they are relevant to dessins of any type.
A graph is $d$-orientable if its edges can be oriented so that the maximum in-degree of the resulting digraph is at most $d$. $d$-orientability is a well-studied concept with close connections to fundamental graph-theoretic notions and applications as a load balancing problem. In this paper we consider the d-ORIENTABLE DELETION problem: given a graph $G=(V,E)$, delete the minimum number of vertices to make $G$ $d$-orientable. We contribute a number of results that improve the state of the art on this problem. Specifically: - We show that the problem is W[2]-hard and $log n$-inapproximable with respect to $k$, the number of deleted vertices. This closes the gap in the problems approximability. - We completely characterize the parameterized complexity of the problem on chordal graphs: it is FPT parameterized by $d+k$, but W-hard for each of the parameters $d,k$ separately. - We show that, under the SETH, for all $d,epsilon$, the problem does not admit a $(d+2-epsilon)^{tw}$, algorithm where $tw$ is the graphs treewidth, resolving as a special case an open problem on the complexity of PSEUDOFOREST DELETION. - We show that the problem is W-hard parameterized by the input graphs clique-width. Complementing this, we provide an algorithm running in time $d^{O(dcdot cw)}$, showing that the problem is FPT by $d+cw$, and improving the previously best known algorithm for this case.