The W-subtype active contact binary PZ UMa with a possible more massive tertiary component


Abstract in English

Two sets of multiple-color ($B, V, R_c, I_c$) light curves of PZ UMa were observed in dependently with the 2.4 meter telescope at the Thai National Observatory and the 1 meter telescope at Yunnan Observatories. The light curves were analyzed with the Wilson-Devinney program and the two sets of light curves produced consistent results, which show that PZ UMa is a W-subtype contact binary with an extreme mass ratio ($M_{1}/M_{2} = 0.18)$. The basic physical parameters of PZ UMa were determined to be $M_{2} = 0.77(2)M_odot$, $M_{1} = 0.14(1)M_odot$, $R_{2} = 0.92(1)R_odot$, $R_{1} = 0.43(1)R_odot$, $L_{2} = 0.46(2)L_odot$ and $L_{1} = 0.15(3)L_odot$. The orbital period analysis of PZ UMa revealed a 13.22 year periodicity, which implies that there may be a tertiary component orbiting around the binary system. The mass and orbital radius of the tertiary component were calculated to be $M_{3} = 0.88 M_odot$ and $a_{3} = 3.67 AU$, if the orbit was coplanar with the central binary system. It is interesting that the minimum mass of the tertiary was calculated to be $M_{3min} = 0.84 M_odot$, which means the tertiary component is even larger than the primary star and the secondary one of PZ UMa. PZ UMa is a late-type contact binary with stellar activity. The OConnell effect appeared on its light curves when it was observed on April 2016. However, the OConnell effect reversed when the target was observed again on December 2016. The changes of the OConnell effect in such a short time-scale strongly support the occurrence of rapidly changing magnetic activity on this W UMa binary.

Download