Cyclic sieving phenomenon on dominant maximal weights over affine Kac-Moody algebras


Abstract in English

We construct a (bi)cyclic sieving phenomenon on the union of dominant maximal weights for level $ell$ highest weight modules over an affine Kac-Moody algebra with exactly one highest weight being taken for each equivalence class, in a way not depending on types, ranks and levels. In order to do that, we introduce $textbf{textit{S}}$-evaluation on the set of dominant maximal weights for each highest modules, and generalize Sagans action by considering the datum on each affine Kac-Moody algebra. As consequences, we obtain closed and recursive formulae for cardinality of the number of dominant maximal weights for every highest weight module and observe level-rank duality on the cardinalities.

Download