Do you want to publish a course? Click here

Hybrid Robot-assisted Frameworks for Endomicroscopy Scanning in Retinal Surgeries

69   0   0.0 ( 0 )
 Added by Zhaoshuo Li
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

High-resolution real-time intraocular imaging of retina at the cellular level is very challenging due to the vulnerable and confined space within the eyeball as well as the limited availability of appropriate modalities. A probe-based confocal laser endomicroscopy (pCLE) system, can be a potential imaging modality for improved diagnosis. The ability to visualize the retina at the cellular level could provide information that may predict surgical outcomes. The adoption of intraocular pCLE scanning is currently limited due to the narrow field of view and the micron-scale range of focus. In the absence of motion compensation, physiological tremors of the surgeons hand and patient movements also contribute to the deterioration of the image quality. Therefore, an image-based hybrid control strategy is proposed to mitigate the above challenges. The proposed hybrid control strategy enables a shared control of the pCLE probe between surgeons and robots to scan the retina precisely, with the absence of hand tremors and with the advantages of an image-based auto-focus algorithm that optimizes the quality of pCLE images. The hybrid control strategy is deployed on two frameworks - cooperative and teleoperated. Better image quality, smoother motion, and reduced workload are all achieved in a statistically significant manner with the hybrid control frameworks.

rate research

Read More

This paper describes a novel approach in human robot interaction driven by ergonomics. With a clear focus on optimising ergonomics, the approach proposed here continuously observes a human users posture and by invoking appropriate cooperative robot movements, the users posture is, whenever required, brought back to an ergonomic optimum. Effectively, the new protocol optimises the human-robot relative position and orientation as a function of human ergonomics. An RGB-D camera is used to calculate and monitor human joint angles in real-time and to determine the current ergonomics state. A total of 6 main causes of low ergonomic states are identified, leading to 6 universal robot responses to allow the human to return to an optimal ergonomics state. The algorithmic framework identifies these 6 causes and controls the cooperating robot to always adapt the environment (e.g. change the pose of the workpiece) in a way that is ergonomically most comfortable for the interacting user. Hence, human-robot interaction is continuously re-evaluated optimizing ergonomics states. The approach is validated through an experimental study, based on established ergonomic methods and their adaptation for real-time application. The study confirms improved ergonomics using the new approach.
Robot-assisted dressing offers an opportunity to benefit the lives of many people with disabilities, such as some older adults. However, robots currently lack common sense about the physical implications of their actions on people. The physical implications of dressing are complicated by non-rigid garments, which can result in a robot indirectly applying high forces to a persons body. We present a deep recurrent model that, when given a proposed action by the robot, predicts the forces a garment will apply to a persons body. We also show that a robot can provide better dressing assistance by using this model with model predictive control. The predictions made by our model only use haptic and kinematic observations from the robots end effector, which are readily attainable. Collecting training data from real world physical human-robot interaction can be time consuming, costly, and put people at risk. Instead, we train our predictive model using data collected in an entirely self-supervised fashion from a physics-based simulation. We evaluated our approach with a PR2 robot that attempted to pull a hospital gown onto the arms of 10 human participants. With a 0.2s prediction horizon, our controller succeeded at high rates and lowered applied force while navigating the garment around a persons fist and elbow without getting caught. Shorter prediction horizons resulted in significantly reduced performance with the sleeve catching on the participants fists and elbows, demonstrating the value of our models predictions. These behaviors of mitigating catches emerged from our deep predictive model and the controller objective function, which primarily penalizes high forces.
Action anticipation, intent prediction, and proactive behavior are all desirable characteristics for autonomous driving policies in interactive scenarios. Paramount, however, is ensuring safety on the road -- a key challenge in doing so is accounting for uncertainty in human driver actions without unduly impacting planner performance. This paper introduces a minimally-interventional safety controller operating within an autonomous vehicle control stack with the role of ensuring collision-free interaction with an externally controlled (e.g., human-driven) counterpart while respecting static obstacles such as a road boundary wall. We leverage reachability analysis to construct a real-time (100Hz) controller that serves the dual role of (i) tracking an input trajectory from a higher-level planning algorithm using model predictive control, and (ii) assuring safety by maintaining the availability of a collision-free escape maneuver as a persistent constraint regardless of whatever future actions the other car takes. A full-scale steer-by-wire platform is used to conduct traffic weaving experiments wherein two cars, initially side-by-side, must swap lanes in a limited amount of time and distance, emulating cars merging onto/off of a highway. We demonstrate that, with our control stack, the autonomous vehicle is able to avoid collision even when the other car defies the planners expectations and takes dangerous actions, either carelessly or with the intent to collide, and otherwise deviates minimally from the planned trajectory to the extent required to maintain safety.
Knowledge of interaction forces during teleoperated robot-assisted surgery could be used to enable force feedback to human operators and evaluate tissue handling skill. However, direct force sensing at the end-effector is challenging because it requires biocompatible, sterilizable, and cost-effective sensors. Vision-based deep learning using convolutional neural networks is a promising approach for providing useful force estimates, though questions remain about generalization to new scenarios and real-time inference. We present a force estimation neural network that uses RGB images and robot state as inputs. Using a self-collected dataset, we compared the network to variants that included only a single input type, and evaluated how they generalized to new viewpoints, workspace positions, materials, and tools. We found that vision-based networks were sensitive to shifts in viewpoints, while state-only networks were robust to changes in workspace. The network with both state and vision inputs had the highest accuracy for an unseen tool, and was moderately robust to changes in viewpoints. Through feature removal studies, we found that using only position features produced better accuracy than using only force features as input. The network with both state and vision inputs outperformed a physics-based baseline model in accuracy. It showed comparable accuracy but faster computation times than a baseline recurrent neural network, making it better suited for real-time applications.
Autonomous robot-assisted feeding requires the ability to acquire a wide variety of food items. However, it is impossible for such a system to be trained on all types of food in existence. Therefore, a key challenge is choosing a manipulation strategy for a previously unseen food item. Previous work showed that the problem can be represented as a linear bandit with visual context. However, food has a wide variety of multi-modal properties relevant to manipulation that can be hard to distinguish visually. Our key insight is that we can leverage the haptic context we collect during and after manipulation (i.e., post hoc) to learn some of these properties and more quickly adapt our visual model to previously unseen food. In general, we propose a modified linear contextual bandit framework augmented with post hoc context observed after action selection to empirically increase learning speed and reduce cumulative regret. Experiments on synthetic data demonstrate that this effect is more pronounced when the dimensionality of the context is large relative to the post hoc context or when the post hoc context model is particularly easy to learn. Finally, we apply this framework to the bite acquisition problem and demonstrate the acquisition of 8 previously unseen types of food with 21% fewer failures across 64 attempts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا