No Arabic abstract
The existence of the exclusion zone (EZ), a layer of water in which plastic microspheres are repelled from hydrophilic surfaces, has now been independently demonstrated by several groups. A better understanding of the mechanisms which generate EZs would help with understanding the possible importance of EZs in biology and in engineering applications such as filtration and microfluidics. Here we review the experimental evidence for EZ phenomena in water and the major theories that have been proposed. We review experimental results from birefringence, neutron radiography, nuclear magnetic resonance, and other studies. Pollack and others have theorized that water in the EZ exists has a different structure than bulk water, and that this accounts for the EZ. We present several alternative explanations for EZs and argue that Schurrs theory based on diffusiophoresis presents a compelling alternative explanation for the core EZ phenomenon. Among other things, Schurrs theory makes predictions about the growth of the EZ with time which have been confirmed by Florea et al. and others. We also touch on several possible confounding factors that make experimentation on EZs difficult, such as charged surface groups, dissolved solutes, and adsorbed nanobubbles.
We characterize the water repartition within the partially saturated (two-phase) zone (PSZ) during evaporation out of mixed wettable porous media by controlling the wettability of glass beads, their sizes, and as well the surrounding relative humidity. Here, Capillary numbers are low and under these conditions, the percolating front is stabilized by gravity. Using experimental and numerical analyses, we find that the PSZ saturation decreases with the Bond number, where packing of smaller particles have higher saturation values than packing made of larger particles. Results also reveal that the extent (height) of the PSZ, as well as water saturation in the PSZ, both increase with wettability. We also numerically calculate the saturation exclusively contained in connected liquid films and results show that values are less than the expected PSZ saturation. These results strongly reflect that the two-phase zone is not solely made up of connected capillary networks, but also made of disconnected water clusters or pockets. Moreover, we also find that global saturation (PSZ + full wet zone) decreases with wettability, confirming that greater quantity of water is lost via evaporation with increasing hydrophilicity. These results show that connected liquid films are favored in more hydrophilic systems while disconnected water pockets are favored in less hydrophilic systems.
In the present paper we performed the analysis of available data on structural, thermodynamic and mechanical properties of B6O. Although the compound is known for half a century and has been extensively studied, many properties of this boron-rich solid remain unknown or doubtful. Semi-empirical analysis of our experimental and literature data allowed us to choose the best values of main thermodynamic and mechanical characteristics among previously reported data, to predict the thermoelastic equation of state of B6O, and dependence of its hardness on non-stoichiometry and temperature.
Elastin is a structural protein with outstanding mechanical properties (e.g., elasticity and resilience) and biologically relevant functions (e.g., triggering responses like cell adhesion or chemotaxis). It is formed from its precursor tropoelastin, a 60-72 kDa water-soluble and temperature-responsive protein that coacervates at physiological temperature, undergoing a phenomenon termed lower critical solution temperature (LCST). Inspired by this behaviour, many scientists and engineers are developing recombinantly produced elastin-inspired biopolymers, usually termed elastin-like polypeptides (ELPs). These ELPs are generally comprised of repetitive motifs with the sequence VPGXG, which corresponds to repeats of a small part of the tropoelastin sequence, X being any amino acid except proline. ELPs display LCST and mechanical properties similar to tropoelastin, which renders them promising candidates for the development of elastic and stimuli-responsive protein-based materials. Unveiling the structure-property relationships of ELPs can aid in the development of these materials by establishing the connections between the ELP amino acid sequence and the macroscopic properties of the materials. Here we present a review of the structure-property relationships of ELPs and ELP-based materials, with a focus on LCST and mechanical properties and how experimental and computational studies have aided in their understanding.
Over the years, plenty of classical interaction potentials for water have been developed and tested against structural, dynamical and thermodynamic properties. On the other hands, it has been recently observed (F. Martelli et. al, textit{ACS Nano}, textbf{14}, 8616--8623, 2020) that the topology of the hydrogen bond network (HBN) is a very sensitive measure that should be considered when developing new interaction potentials. Here we report a thorough comparison of 11 popular non polarizable classical water models against their HBN, which is at the root of water properties. We probe the topology of the HBN using the ring statistics and we evaluate the quality of the network inspecting the percentage of broken and intact HBs. For each water model, we assess the tendency to develop hexagonal rings (that promote crystallization at low temperatures) and pentagonal rings (known to frustrate against crystallization at low temperatures). We then introduce the emph{network complexity index}, a general descriptor to quantify how much the topology of a given network deviates from that of the ground state, namely of hexagonal or cubic ice. Remarkably, we find that the network complexity index allows us to relate, for the first time, the dynamical properties of different water models with their underlying topology of the HBN. Our study provides a benchmark against which the performances of new models should be tested against, and introduces a general way to quantify the complexity of a network which can be transferred to other materials and that links the topology of the HBN with dynamical properties. Finally, our study introduces a new perspective that can help in rationalizing the transformations among the different phases of water and of other materials.
The magnitude of the work function to bring an electron from a metal into the exclusion zone water layer making hydrophilic contact with the metallic interface is theoretically computed. The agreement with recent experimental measurements is satisfactory.