No Arabic abstract
We study the Biswas-Chatterjee-Sen (BCS) model, also known as the KCOD (Kinetic Continuous Opinion Dynamics) model on quasiperiodic lattices by using Kinetic Monte Carlo simulations and Finite Size Scaling technique. Our results are consistent with a continuous phase transition, controlled by an external noise. We obtained the order parameter $M$, defined as the averaged opinion, the fourth-order Binder cumulant $U$, and susceptibility $chi$ as functions of the noise parameter. We estimated the critical noises for Penrose, and Ammann-Beenker lattices. We also considered 7-fold and 9-fold quasiperiodic lattices and estimated the respective critical noises as well. Irrespective of rotational and translational long-range order of the lattice, the system falls in the same universality class of the two-dimensional Ising model. Quasiperiodic order is irrelevant and it does not change any critical exponents for BCS model.
On Archimedean lattices, the Ising model exhibits spontaneous ordering. Three examples of these lattices of the majority-vote model with noise are considered and studied through extensive Monte Carlo simulations. The order/disorder phase transition is observed in this system. The calculated values of the critical noise parameter are q_c=0.089(5), q_c=0.078(3), and q_c=0.114(2) for honeycomb, Kagome and triangular lattices, respectively. The critical exponents beta/nu, gamma/nu and 1/nu for this model are 0.15(5), 1.64(5), and 0.87(5); 0.14(3), 1.64(3), and 0.86(6); 0.12(4), 1.59(5), and 1.08(6) for honeycomb, Kagome and triangular lattices, respectively. These results differs from the usual Ising model results and the majority-vote model on so-far studied regular lattices or complex networks. The effective dimensionalities of the system D_{eff}= 1.96(5) (honeycomb), D_{eff} =1.92(4) (Kagome), and D_{eff}= 1.83(5) (triangular) for these networks are just compatible to the embedding dimension two.
The critical properties of the spin-1 two-dimensional Blume-Capel model on directed and undi- rected random lattices with quenched connectivity disorder is studied through Monte Carlo simulations. The critical temperature, as well as the critical point exponents are obtained. For the undi- rected case this random system belongs to the same universality class as the regular two-dimensional model. However, for the directed random lattice one has a second-order phase transition for q < qc and a first-order phase transition for q > qc, where qc is the critical rewiring probability. The critical exponents for q < qc was calculated and they do not belong to the same universality class as the regular two-dimensional ferromagnetic model.
Corrections to scaling in the two-dimensional scalar phi^4 model are studied based on non-perturbative analytical arguments and Monte Carlo (MC) simulation data for different lattice sizes L (from 4 to 1536) and different values of the phi^4 coupling constant lambda, i.~e., lambda = 0.1, 1, 10. According to our analysis, amplitudes of the nontrivial correction terms with the correction-to-scaling exponents omega_l < 1 become small when approaching the Ising limit (lambda --> infinity), but such corrections generally exist in the 2D phi^4 model. Analytical arguments show the existence of corrections with the exponent 3/4. The numerical analysis suggests that there exist also corrections with the exponent 1/2 and, very likely, also corrections with the exponent about 1/4, which are detectable at lambda = 0.1. The numerical tests clearly show that the structure of corrections to scaling in the 2D phi^4 model differs from the usually expected one in the 2D Ising model.
We introduce a model for diffusion of two classes of particles ($A$ and $B$) with priority: where both species are present in the same site the motion of $A$s takes precedence over that of $B$s. This describes realistic situations in wireless and communication networks. In regular lattices the diffusion of the two species is normal but the $B$ particles are significantly slower, due to the presence of the $A$ particles. From the fraction of sites where the $B$ particles can move freely, which we compute analytically, we derive the diffusion coefficients of the two species. In heterogeneous networks the fraction of sites where $B$ is free decreases exponentially with the degree of the sites. This, coupled with accumulation of particles in high-degree nodes leads to trapping of the low priority particles in scale-free networks.
When a quantum many-particle system exists on a randomly diluted lattice, its intrinsic thermal and quantum fluctuations coexist with geometric fluctuations due to percolation. In this paper, we explore how the interplay of these fluctuations influences the phase transition at the percolation threshold. While it is well known that thermal fluctuations generically destroy long-range order on the critical percolation cluster, the effects of quantum fluctuations are more subtle. In diluted quantum magnets with and without dissipation, this leads to novel universality classes for the zero-temperature percolation quantum phase transition. Observables involving dynamical correlations display nonclassical scaling behavior that can nonetheless be determined exactly in two dimensions.