Do you want to publish a course? Click here

Coupling Rendering and Generative Adversarial Networks for Artificial SAS Image Generation

155   0   0.0 ( 0 )
 Added by Isaac Gerg
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Acquisition of Synthetic Aperture Sonar (SAS) datasets is bottlenecked by the costly deployment of SAS imaging systems, and even when data acquisition is possible,the data is often skewed towards containing barren seafloor rather than objects of interest. We present a novel pipeline, called SAS GAN, which couples an optical renderer with a generative adversarial network (GAN) to synthesize realistic SAS images of targets on the seafloor. This coupling enables high levels of SAS image realism while enabling control over image geometry and parameters. We demonstrate qualitative results by presenting examples of images created with our pipeline. We also present quantitative results through the use of t-SNE and the Frechet Inception Distance to argue that our generated SAS imagery potentially augments SAS datasets more effectively than an off-the-shelf GAN.



rate research

Read More

219 - Eric Heim 2019
Generative Adversarial Networks (GANs) have received a great deal of attention due in part to recent success in generating original, high-quality samples from visual domains. However, most current methods only allow for users to guide this image generation process through limited interactions. In this work we develop a novel GAN framework that allows humans to be in-the-loop of the image generation process. Our technique iteratively accepts relative constraints of the form Generate an image more like image A than image B. After each constraint is given, the user is presented with new outputs from the GAN, informing the next round of feedback. This feedback is used to constrain the output of the GAN with respect to an underlying semantic space that can be designed to model a variety of different notions of similarity (e.g. classes, attributes, object relationships, color, etc.). In our experiments, we show that our GAN framework is able to generate images that are of comparable quality to equivalent unsupervised GANs while satisfying a large number of the constraints provided by users, effectively changing a GAN into one that allows users interactive control over image generation without sacrificing image quality.
Quantum machine learning is expected to be one of the first practical applications of near-term quantum devices. Pioneer theoretical works suggest that quantum generative adversarial networks (GANs) may exhibit a potential exponential advantage over classical GANs, thus attracting widespread attention. However, it remains elusive whether quantum GANs implemented on near-term quantum devices can actually solve real-world learning tasks. Here, we devise a flexible quantum GAN scheme to narrow this knowledge gap, which could accomplish image generation with arbitrarily high-dimensional features, and could also take advantage of quantum superposition to train multiple examples in parallel. For the first time, we experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor. Moreover, we utilize a gray-scale bar dataset to exhibit the competitive performance between quantum GANs and the classical GANs based on multilayer perceptron and convolutional neural network architectures, respectively, benchmarked by the Frechet Distance score. Our work provides guidance for developing advanced quantum generative models on near-term quantum devices and opens up an avenue for exploring quantum advantages in various GAN-related learning tasks.
In this paper, we address the hyperspectral image (HSI) classification task with a generative adversarial network and conditional random field (GAN-CRF) -based framework, which integrates a semi-supervised deep learning and a probabilistic graphical model, and make three contributions. First, we design four types of convolutional and transposed convolutional layers that consider the characteristics of HSIs to help with extracting discriminative features from limited numbers of labeled HSI samples. Second, we construct semi-supervised GANs to alleviate the shortage of training samples by adding labels to them and implicitly reconstructing real HSI data distribution through adversarial training. Third, we build dense conditional random fields (CRFs) on top of the random variables that are initialized to the softmax predictions of the trained GANs and are conditioned on HSIs to refine classification maps. This semi-supervised framework leverages the merits of discriminative and generative models through a game-theoretical approach. Moreover, even though we used very small numbers of labeled training HSI samples from the two most challenging and extensively studied datasets, the experimental results demonstrated that spectral-spatial GAN-CRF (SS-GAN-CRF) models achieved top-ranking accuracy for semi-supervised HSI classification.
High-resolution magnetic resonance images can provide fine-grained anatomical information, but acquiring such data requires a long scanning time. In this paper, a framework called the Fused Attentive Generative Adversarial Networks(FA-GAN) is proposed to generate the super-resolution MR image from low-resolution magnetic resonance images, which can reduce the scanning time effectively but with high resolution MR images. In the framework of the FA-GAN, the local fusion feature block, consisting of different three-pass networks by using different convolution kernels, is proposed to extract image features at different scales. And the global feature fusion module, including the channel attention module, the self-attention module, and the fusion operation, is designed to enhance the important features of the MR image. Moreover, the spectral normalization process is introduced to make the discriminator network stable. 40 sets of 3D magnetic resonance images (each set of images contains 256 slices) are used to train the network, and 10 sets of images are used to test the proposed method. The experimental results show that the PSNR and SSIM values of the super-resolution magnetic resonance image generated by the proposed FA-GAN method are higher than the state-of-the-art reconstruction methods.
As deep learning is showing unprecedented success in medical image analysis tasks, the lack of sufficient medical data is emerging as a critical problem. While recent attempts to solve the limited data problem using Generative Adversarial Networks (GAN) have been successful in generating realistic images with diversity, most of them are based on image-to-image translation and thus require extensive datasets from different domains. Here, we propose a novel model that can successfully generate 3D brain MRI data from random vectors by learning the data distribution. Our 3D GAN model solves both image blurriness and mode collapse problems by leveraging alpha-GAN that combines the advantages of Variational Auto-Encoder (VAE) and GAN with an additional code discriminator network. We also use the Wasserstein GAN with Gradient Penalty (WGAN-GP) loss to lower the training instability. To demonstrate the effectiveness of our model, we generate new images of normal brain MRI and show that our model outperforms baseline models in both quantitative and qualitative measurements. We also train the model to synthesize brain disorder MRI data to demonstrate the wide applicability of our model. Our results suggest that the proposed model can successfully generate various types and modalities of 3D whole brain volumes from a small set of training data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا