Influence of the magnetron power on the Er-related photoluminescence of AlN:Er films prepared by magnetron sputtering


Abstract in English

The effect of magnetron power on the room temperature 1.54 $mu$m infra-red photoluminescence intensity of erbium doped AlN films grown by r. f. magnetron sputtering, has been studied. The AlN:Er thin films were deposited on (001) Silicon substrates. The study presents relative photoluminescence intensities of nanocrystallized samples prepared with identical sputtering parameters for two erbium doping levels (0.5 and 1.5 atomic %). The structural evolution of the crystallites as a function of the power is followed by transmission electron microscopy. Copyright line will be provided by the publisher 1 Introduction For some time now, rare-earth (RE)-doped semiconductors represent significant potential applications in the field of opto-electronic technology. Part of this technological interest relies on the shielded 4f levels of the RE ions as they give rise to sharp and strong luminescence peaks [1-5]. Among the RE elements, Er is preferred to its counterparts since the Er ions can produce both visible light at 558 nm (green, one of the primary colours) and IR light at 1.54 $mu$m whose spectrum region coincides with the main low-loss region in the absorption spectrum of silica-based optical fibres, combining so potential applications towards photonic devices and towards optical communication devices operating in the infrared domain. These interesting emissions can however only be exploited when placed into host matrixes. On one side, the shielding of the intra 4f levels prevents the shifting of the RE 3+ energy levels and ensures the frequency emission stability. Moreover the intra 4f transitions are parity forbidden for the isolated ions. Matrixes can render the Er 3+ ions optically active, via a relaxation of selection rules due to crystal field effects. As silicon based materials were tested in the 1960s to the 90s with no clear industrial success it was found that the

Download