No Arabic abstract
Moment expansions are used as model reduction technique in kinetic gas theory to approximate the Boltzmann equation. Rarefied gas models based on so-called moment equations became increasingly popular recently. However, in a seminal paper by Holway [Phys. Fluids 7/6, (1965)] a fundamental restriction on the existence of the expansion was used to explain sub-shock behavior of shock profile solutions obtained by moment equations. Later, Weiss [Phys. Fluids 8/6, (1996)] argued that this restriction does not exist. We will revisit and discuss their findings and explain that both arguments have a correct and incorrect part. While a general convergence restriction for moment expansions does exist, it cannot be attributed to sub-shock solutions. We will also discuss the implications of the restriction and give some numerical evidence for our considerations.
The hydrostatic equilibrium state is the consequence of the exact hydrostatic balance between hydrostatic pressure and external force. Standard finite volume or finite difference schemes cannot keep this balance exactly due to their unbalanced truncation errors. In this study, we introduce an auxiliary variable which becomes constant at isothermal hydrostatic equilibrium state and propose a well-balanced gas kinetic scheme for the Navier-Stokes equations with a global reconstruction. Through reformulating the convection term and the force term via the auxiliary variable, zero numerical flux and zero numerical source term are enforced at the hydrostatic equilibrium state instead of the balance between hydrostatic pressure and external force. Several problems are tested numerically to demonstrate the accuracy and the stability of the new scheme, and the results confirm that, the new scheme can preserve the exact hydrostatic solution. The small perturbation riding on hydrostatic equilibria can be calculated accurately. The viscous effect is also illustrated through the propagation of small perturbation and the Rayleigh-Taylor instability. More importantly, the new scheme is capable of simulating the process of converging towards hydrostatic equilibrium state from a highly non-balanced initial condition. The ultimate state of zero velocity and constant temperature is achieved up to machine accuracy. As demonstrated by the numerical experiments, the current scheme is very suitable for small amplitude perturbation and long time running under gravitational potential.
Simulating inhomogeneous flows with different characteristic scales in different coordinate directions using the collide-and-stream based lattice Boltzmann methods (LBM) can be accomplished efficiently using rectangular lattice grids. We develop and investigate a new rectangular central moment LBM based on non-orthogonal moment basis (referred to as RC-LBM). The equilibria to which the central moments relax under collision in this approach are obtained from matching with those corresponding to the continuous Maxwell distribution. A Chapman-Enskog analysis is performed to derive the correction terms to the second order moment equilibria involving the grid aspect ratio and velocity gradients that restores the isotropy of the viscous stress tensor and eliminates the non-Galilean invariant cubic velocity terms of the resulting hydrodynamical equations. A special case of this rectangular formulation involving the raw moments (referred to as the RNR-LBM) is also constructed. The resulting schemes represent a considerable simplification, especially for the transformation matrices and isotropy corrections, and improvement over the existing MRT-LB schemes on rectangular lattice grids that use orthogonal moment basis. Numerical validation study of both the RC-LBM and RNR-LBM for a variety of benchmark flow problems are performed that show good accuracy at various grid aspect ratios. The ability of our proposed schemes to simulate flows using relatively lower grid aspect ratios than considered in prior rectangular LB approaches is demonstrated. Furthermore, simulations reveal the superior stability characteristics of the RC-LBM over RNR-LBM in handling shear flows at lower viscosities and/or higher characteristic velocities. In addition, computational advantages of using our rectangular LB formulation in lieu of that based on the square lattice is shown.
Recently the general synthetic iteration scheme (GSIS) is proposed to find the steady-state solution of the Boltzmann equation~cite{SuArXiv2019}, where various numerical simulations have shown that (i) the steady-state solution can be found within dozens of iterations at any Knudsen number $K$, and (ii) the solution is accurate even when the spatial cell size in the bulk region is much larger than the molecular mean free path, i.e. Navier-Stokes solutions are recovered at coarse grids. The first property indicates that the error decay rate between two consecutive iterations decreases to zero with $K$, while the second one implies that the GSIS is asymptotically preserving the Navier-Stokes limit. This paper is dedicated to the rigorous proof of both properties.
Unified gas kinetic scheme (UGKS) is an asymptotic preserving scheme for the kinetic equations. It is superior for transition flow simulations, and has been validated in the past years. However, compared to the well known discrete ordinate method (DOM) which is a classical numerical method solving the kinetic equations, the UGKS needs more computational resources. In this study, we propose a simplification of the unified gas kinetic scheme. It allows almost identical numerical cost as the DOM, but predicts numerical results as accurate as the UGKS. Based on the observation that the equilibrium part of the UGKS fluxes can be evaluated analytically, the equilibrium part in the UGKS flux is not necessary to be discretized in velocity space. In the simplified scheme, the numerical flux for the velocity distribution function and the numerical flux for the macroscopic conservative quantities are evaluated separately. The simplification is equivalent to a flux hybridization of the gas kinetic scheme for the Navier-Stokes (NS) equations and conventional discrete ordinate method. Several simplification strategies are tested, through which we can identify the key ingredient of the Navier-Stokes asymptotic preserving property. Numerical tests show that, as long as the collision effect is built into the macroscopic numerical flux, the numerical scheme is Navier-Stokes asymptotic preserving, regardless the accuracy of the microscopic numerical flux for the velocity distribution function.
The performance of interFoam (a widely used solver within OpenFOAM package) in simulating the propagation of water waves has been reported to be sensitive to the temporal and spatial resolution. To facilitate more accurate simulations, a numerical wave tank is built based on a high-order accurate Navier-Stokes model, which employs the VPM (volume-average/point-value multi-moment) scheme as the fluid solver and the THINC/QQ method (THINC method with quadratic surface representation and Gaussian quadrature) for the free-surface capturing. Simulations of regular waves in an intermediate water depth are conducted and the results are assessed via comparing with the analytical solutions. The performance of the present model and interFoam solver in simulating the wave propagation is systematically compared in this work. The results clearly demonstrate that compared with interFoam solver, the present model significantly improves the dissipation properties of the propagating wave, where the waveforms as well as the velocity distribution can be substantially maintained while the waves propagating over long distances even with large time steps and coarse grids. It is also shown that the present model requires much less computation time to reach a given error level in comparison with interFoam solver.