No Arabic abstract
We calculate the superfluid weight and the polarization amplitude for the one-dimensional bosonic Hubbard model focusing on the strong-coupling regime. Other than analytic calculations we apply two methods: variational Monte Carlo based on the Baeriswyl wave function and exact diagonalization. The former gives zero superfluid response at integer filling, while the latter gives a superfluid response at finite hopping. From the polarization amplitude we derive the variance and the associated size scaling exponent. Again, the variational study does not produce a finite superfluid weight at integer filling (size scaling exponent is near one), but the Fourier transform of the polarization amplitude behaves in a similar way to the result of exact diagonalization, with a peak at small hopping, and suddenly decreasing at the insulator-superfluid transition. On the other hand, exact diagonalization studies result in a finite spread of the total position which increases with the size of the system. In the superfluid phase the size scaling exponent is two as expected. Importantly, our work addresses the ambiguities that arise in the calculation of the superfluid weight in variational calculations, and we comment on the prediction of Anderson about the superfluid response of the model at integer filling.
The Haldane Insulator is a gapped phase characterized by an exotic non-local order parameter. The parameter regimes at which it might exist, and how it competes with alternate types of order, such as supersolid order, are still incompletely understood. Using the Stochastic Green Function (SGF) quantum Monte Carlo (QMC) and the Density Matrix Renormalization Group (DMRG), we study numerically the ground state phase diagram of the one-dimensional bosonic Hubbard model (BHM) with contact and near neighbor repulsive interactions. We show that, depending on the ratio of the near neighbor to contact interactions, this model exhibits charge density waves (CDW), superfluid (SF), supersolid (SS) and the recently identified Haldane insulating (HI) phases. We show that the HI exists only at the tip of the unit filling CDW lobe and that there is a stable SS phase over a very wide range of parameters.
We study the phase diagram of the one-dimensional bosonic Hubbard model with contact ($U$) and near neighbor ($V$) interactions focusing on the gapped Haldane insulating (HI) phase which is characterized by an exotic nonlocal order parameter. The parameter regime ($U$, $V$ and $mu$) where this phase exists and how it competes with other phases such as the supersolid (SS) phase, is incompletely understood. We use the Stochastic Green Function quantum Monte Carlo algorithm as well as the density matrix renormalization group to map out the phase diagram. Our main conclusions are that the HI exists only at $rho=1$, the SS phase exists for a very wide range of parameters (including commensurate fillings) and displays power law decay in the one body Green function. In addition, we show that at fixed integer density, the system exhibits phase separation in the $(U,V)$ plane.
We use unbiased computational methods to elucidate the onset and properties of pair superfluidity in two-species fermionic and bosonic systems with onsite interspecies attraction loaded in one-dimensional optical lattice. We compare results from quantum Monte Carlo (QMC) and density matrix renormalization group (DMRG), emphasizing the one-to-one correspondence between the Drude weight tensor, calculated with DMRG, and the various winding numbers extracted from the QMC. Our results show that, for any nonvanishing attractive interaction, pairs form and are the sole contributors to superfluidity, there are no individual contributions due to the separate species. For weak attraction, the pair size diverges exponentially, i.e. Bardeen-Cooper-Schrieffer (BCS) pairing requiring huge systems to bring out the pair-only nature of the superfluid. This crucial property is largely overlooked in many studies, thereby misinterpreting the origin and nature of the superfluid. We compare and contrast this with the repulsive case and show that the behavior is very different, contradicting previous claims about drag superfluidity and the symmetry of properties for attractive and repulsive interactions. Finally, our results show that the situation is similar for soft core bosons: superfluidity is due only to pairs, even for the smallest attractive interaction strength compatible with the largest system sizes that we could attain.
A variational Monte Carlo method for bosonic lattice models is introduced. The method is based on the Baeriswyl projected wavefunction. The Baeriswyl wavefunction consists of a kinetic energy based projection applied to the wavefunction at infinite interaction, and is related to the shadow wavefunction already used in the study of continuous models of bosons. The wavefunction at infinite interaction, and the projector, are represented in coordinate space, leading to an expression for expectation values which can be evaluated via Monte Carlo sampling. We calculate the phase diagram and other properties of the bosonic Hubbard model. The calculated phase diagram is in excellent agreement with known quantum Monte Carlo results. We also analyze correlation functions.
We study, using quantum Monte-Carlo simulations, the bosonic Kondo-Hubbard model in a two dimensional square lattice. We explore the phase diagram and analyse the mobility of particles and magnetic properties. At unit filling, the transition from a paramagnetic Mott insulator to a ferromagnetic superfluid appears continuous, contrary to what was predicted with mean field. For double occupation per site, both the Mott insulating and superfluid phases are ferromagnetic and the transition is still continuous. Multiband tight binding Hamiltonians can be realized in optical lattice experiments, which offer not only the possibility of tuning the different energy scales over wide ranges, but also the option of loading the system with either fermionic or bosonic atoms.