Do you want to publish a course? Click here

Deep Learning for Cooperative Radio Signal Classification

72   0   0.0 ( 0 )
 Added by Shilian Zheng
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Radio signal classification has a very wide range of applications in cognitive radio networks and electromagnetic spectrum monitoring. In this article, we consider scenarios where multiple nodes in the network participate in cooperative classification. We propose cooperative radio signal classification methods based on deep learning for decision fusion, signal fusion and feature fusion, respectively. We analyze the performance of these methods through simulation experiments. We conclude the article with a discussion of research challenges and open problems.

rate research

Read More

Deep learning methods achieve great success in many areas due to their powerful feature extraction capabilities and end-to-end training mechanism, and recently they are also introduced for radio signal modulation classification. In this paper, we propose a novel deep learning framework called SigNet, where a signal-to-matrix (S2M) operator is adopted to convert the original signal into a square matrix first and is co-trained with a follow-up CNN architecture for classification. This model is further accelerated by integrating 1D convolution operators, leading to the upgraded model SigNet2.0. The experiments on two signal datasets show that both SigNet and SigNet2.0 outperform a number of well-known baselines, achieving the state-of-the-art performance. Notably, they obtain significantly higher accuracy than 1D-ResNet and 2D-CNN (at most increasing 70.5%), while much faster than LSTM (at most saving 88.0% training time). More interestingly, our proposed models behave extremely well in few-shot learning when a small training data set is provided. They can achieve a relatively high accuracy even when 1% training data are kept, while other baseline models may lose their effectiveness much more quickly as the datasets get smaller. Such result suggests that SigNet/SigNet2.0 could be extremely useful in the situations where labeled signal data are difficult to obtain.
Radio signal classification has a very wide range of applications in the field of wireless communications and electromagnetic spectrum management. In recent years, deep learning has been used to solve the problem of radio signal classification and has achieved good results. However, the radio signal data currently used is very limited in scale. In order to verify the performance of the deep learning-based radio signal classification on real-world radio signal data, in this paper we conduct experiments on large-scale real-world ACARS and ADS-B signal data with sample sizes of 900,000 and 13,000,000, respectively, and with categories of 3,143 and 5,157 respectively. We use the same Inception-Residual neural network model structure for ACARS signal classification and ADS-B signal classification to verify the ability of a single basic deep neural network model structure to process different types of radio signals, i.e., communication bursts in ACARS and pulse bursts in ADS-B. We build an experimental system for radio signal deep learning experiments. Experimental results show that the signal classification accuracy of ACARS and ADS-B is 98.1% and 96.3%, respectively. When the signal-to-noise ratio (with injected additive white Gaussian noise) is greater than 9 dB, the classification accuracy is greater than 92%. These experimental results validate the ability of deep learning to classify large-scale real-world radio signals. The results of the transfer learning experiment show that the model trained on large-scale ADS-B datasets is more conducive to the learning and training of new tasks than the model trained on small-scale datasets.
Existing tag signal detection algorithms inevitably suffer from a high bit error rate (BER) due to the difficulties in estimating the channel state information (CSI). To eliminate the requirement of channel estimation and to improve the system performance, in this paper, we adopt a deep transfer learning (DTL) approach to implicitly extract the features of communication channel and directly recover tag symbols. Inspired by the powerful capability of convolutional neural networks (CNN) in exploring the features of data in a matrix form, we design a novel covariance matrix aware neural network (CMNet)-based detection scheme to facilitate DTL for tag signal detection, which consists of offline learning, transfer learning, and online detection. Specifically, a CMNet-based likelihood ratio test (CMNet-LRT) is derived based on the minimum error probability (MEP) criterion. Taking advantage of the outstanding performance of DTL in transferring knowledge with only a few training data, the proposed scheme can adaptively fine-tune the detector for different channel environments to further improve the detection performance. Finally, extensive simulation results demonstrate that the BER performance of the proposed method is comparable to that of the optimal detection method with perfect CSI.
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy. Reinforcement learning (RL) is a trending data-driven approach for adaptive traffic signal control in complex urban traffic networks. Although the development of deep neural networks (DNN) further enhances its learning capability, there are still some challenges in applying deep RLs to transportation networks with multiple signalized intersections, including non-stationarity environment, exploration-exploitation dilemma, multi-agent training schemes, continuous action spaces, etc. In order to address these issues, this paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms. MADDPG has a centralized learning and decentralized execution paradigm in which critics use additional information to streamline the training process, while actors act on their own local observations. The model is evaluated via simulation on the Simulation of Urban MObility (SUMO) platform. Model comparison results show the efficiency of the proposed algorithm in controlling traffic lights.
Spectrum sensing is a key technology for cognitive radios. We present spectrum sensing as a classification problem and propose a sensing method based on deep learning classification. We normalize the received signal power to overcome the effects of noise power uncertainty. We train the model with as many types of signals as possible as well as noise data to enable the trained network model to adapt to untrained new signals. We also use transfer learning strategies to improve the performance for real-world signals. Extensive experiments are conducted to evaluate the performance of this method. The simulation results show that the proposed method performs better than two traditional spectrum sensing methods, i.e., maximum-minimum eigenvalue ratio-based method and frequency domain entropy-based method. In addition, the experimental results of the new untrained signal types show that our method can adapt to the detection of these new signals. Furthermore, the real-world signal detection experiment results show that the detection performance can be further improved by transfer learning. Finally, experiments under colored noise show that our proposed method has superior detection performance under colored noise, while the traditional methods have a significant performance degradation, which further validate the superiority of our method.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا